

Fluid Management

Off-line Filters
Off-line Filter Units
Oil Service Units
Dewatering Systems
Filter Elements

Products with these icons are specially made for: **Industrial Applications**

Mobile Applications

Fluid Management

Content

Content	5
Product range	7
Off-line Filters	
FN1 040	13
FN 060 · FN 300	
FNS 040	25
FNS 060	29
Off-line Filter Units	
FNA 014	35
FNA1 008 / 016	
FNA1HV 008 / 016.	
FNA 040-553	47
FNA 045	51
FNAPC1 045	
FNU 008	63
Oil Service Units	
CFP 03	67
FA1 / FA1HV 008	
FA 016 · FAPC 016	75
UM 045 · UMPC 045	81
UMPCL 045 Lightline	87
FA 003-2341	91
FA 016-1160	95
Suction Strainer Set FA 016.1775	99
Mounting Set FNA 008.1700	101
OPS 010 · OPS 550	103
Filter Elements	
EXAPOR®AQUA	107

Page 6www.argo-hytos.comSubject to change · EN/US · 0121

Product range

Filtration

Return-suction filters

Return filters

Pressure filters

High pressure filters

Clogging Indicators

Tank solutions

Filling and ventilating filters

Description

ARGO-HYTOS produces sophisticated filter solutions together with hydraulic and lubrication systems. The range of solutions we have implemented extends from fixed-position industrial plants to mobile applications.

As well as customized developments, exactly adjusted to the individual requirements of the customer, ARGO-HYTOS offers a comprehensive range of innovative standard solutions for a wide variety of applications:

- > Suction filters
- > Return-suction filters and return filters
- > Pressure and high pressure filters
- > Filling and ventilating filters
- Tank solutions
- > Filter and tank accessories

Fluid and Motion Control

Customized solutions

Control solutions

Gear pumps

Plates

Page 8 www.argo-hytos.com

Fluid and Motion Control

Directional and proportional valves

Modular valves

Bankable modular valve assembly

Screw-in cartridge valves

Slip-in cartridge valves

Load motion cartridges

Explosion proof valves

Hydraulic power packs

Description

ARGO-HYTOS' expertise in control technology is the fruit of more than 70 years' experience. We focus here on a wide range of valves, power units and integrated manifolds featuring all commonly used design features and functions, together with proportional valves and the associated control electronics:

- Directly operated directional valves in CETOP 02 to CETOP 05 and pilot operated directional valves in CETOP 07 and CETOP 08
- Valves sub-plate and sandwich type flow control, pressure and check valves in CETOP 02 to CETOP 05
- Cartridge valves
- Directly activated proportional valves with compensator sandwich valve, in CETOP 02 to CETOP 05
- ➤ Analog and digital control electronics on-board, or for installation in control cabinets
- > Power pack assembly kits
- Customized control blocks

Fluid Management

Off-line filter

Off-line filter unit

Off-line filter unit

Oil service unit

Oil service unit

Compact filter pack

Dewatering system

Description

As well as reducing maintenance and servicing costs, effective fluid management is also a key factor in boosting the reliability, productivity and cost-effectiveness of the operation.

ARGO-HYTOS supplies application-oriented products for manual and automatic cleaning of hydraulic fluids:

- Off-line filters
- Off-line filter units
- Oil service units
- Dewatering systems
- Compact filter pack

Page 10 www.argo-hytos.com

Product range

Sensors and Measurement

Portable particle counter

Portable particle monitor

Particle monitor

Wear sensor

Humidity sensor

Condition sensors

Remote interfaces / display units

Software

Description

Systems that provide reliable assessment of the condition of hydraulic fluids are the key feature of continuous fluid monitoring.

The sensors and measurement technology from ARGO-HYTOS precisely targets this range of tasks. Our fluid monitoring products comprise equipment and system solutions to enable online monitoring during continuous operation as well as analysis of bottled samples under laboratory conditions.

- > Portable oil diagnosis equipment
- > Stationary and portable particle monitor
- Oil condition sensors
- > Software to evaluate data and analyze trends

www.argo-hytos.com

Off-line Filters

FN1 040

In-line mounting · Operating pressure up to 12 bar / 174 psi · Nominal flow rate 40 l/min / 10.6 gpm

Off-line Filter FN1 040

Description

Application

Return-flow filter or off-line filter in hydraulic and lubrication systems.

Performance features

The EXAPOR®MAX 2 and EXAPOR®AQUA ultra-fine elements are the heart of the ARGO-HYTOS off-line filters. High separation efficiencies guarantee excellent cleanliness levels and thereby highest protection of components. The high dirt and water capacity of the EXAPOR®MAX 2 and EXAPOR®AQUA elements allows economical operation of the machine.

Special design features

User-friendly filter element change:

The cover of the FN 040 can be opened without special auxiliary tools. The filter element can be removed from the housing together with the cover.

Dirt retention valve:

The element is flown through from the inside to the outside. The built-in dirt retention valve closes automatically when the element is removed, ensuring that all dirt is removed from the housing together with the element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- > low pressure drop
- > high dirt-holding capacities
- particularly long maintenance intervals

Characteristics

Operating pressure

Max. 12 bar / 174 psi

Cracking pressure of by-pass

3.5 bar / 51 psi

Nominal flow rate

40 l/min / 10 gpm up to 60 l/min / 15 gpm The nominal flow rates indicated by ARGO-HYTOS are based on the following features:

- closed by-pass valve at $v \le 200 \text{ mm}^2/\text{s} / 930 \text{ SUS}$
- element service life > 1000 operating hours at an average fluid contamination of 0.07 g per l/min / 0.27 g per gpm flow volume
- flow velocity in the connection lines: up to 10 bar ≤ 4.5 m/s / 145 psi ≤ 14.8 ft/s

Filter fineness

- 3 μm(c) ... 10 μm(c) for EXAPOR®MAX 2 separating solid particles
- 3 μm(c) ... 7 μm(c) for EXAPOR®AQUA separating water and solid particles

β-values according to ISO 16889 (see Ordering Code, table filter element)

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Ordering Code, table Filter Element).

Materials

Filter housing: Aluminum alloy powder painted RAL 5015

Filter end plate: Aluminum alloy
Cover: Aluminum alloy
Seals: NBR (FPM on request)

Filter media: EXAPOR®MAX 2 - inorganic, multi-layer

microfiber web

EXAPOR®AQUA - combination of water absorbing filter layers and inorganic,

multi-layer microfiber web

Remarks

Other colors of the filter housing are available on request. Special versions, not shown in this catalog, are also available on request.

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range

-30 °C ... +100 °C (temporary -40 °C ... +120 °C) -22 °F ... +212 °F (temporary -40 °F ... +248 °F)

Viscosity at nominal flow rate

 \rightarrow at operating temperature: $v < 35 \text{ mm}^2/\text{s} / 162 \text{ SUS}$

• as starting viscosity: $v_{max} = 1200 \text{ mm}^2/\text{s} / 5560 \text{ SUS}$

> at initial operation:

The recommended starting viscosity can be read from the diagram D (pressure drop as a function of the kinematic viscosity) as follows: Find the 70% Δp of the cracking pressure of the by-pass valve on the vertical axis. Draw a horizontal line so that it intersects the Δp curve at a point. Read this point on the horizontal axis for the viscosity.

Mounting position

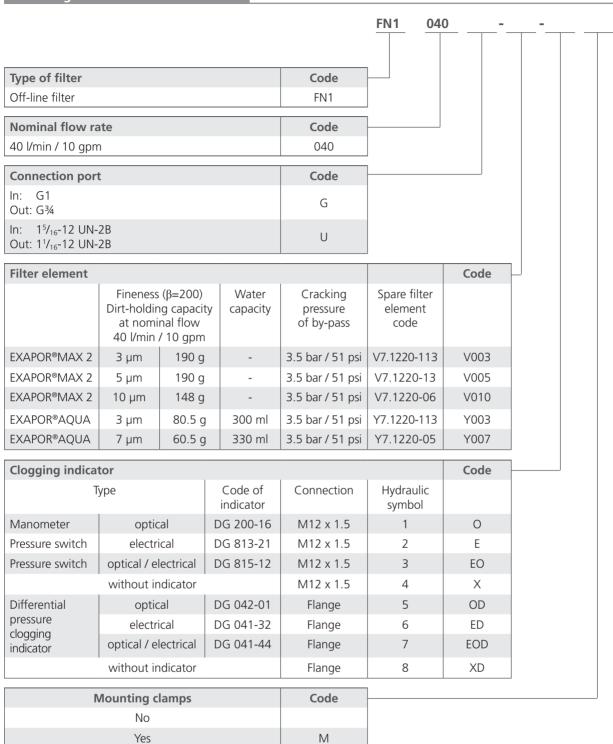
Vertical, connection port at the bottom

Weight

Without mounting clamps: 6.7 kg / 14.77 lbs With mounting clamps: 8.3 kg / 18.3 lbs

Connection

Threaded ISO 228 or UNF ports (see Dimensions Drawing)

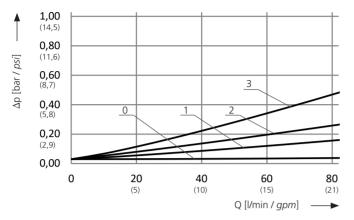

Accessories

A mounting kit (2 pcs of mounting clamps) may be ordered together with the off-line filter (M in the order code) or separately (order code FNS 060.1730).

Electrical and / or optical clogging indicators may be ordered together with the off-line filter. For choosing the proper clogging indicator, see table Clogging Indicator in the Ordering Code. The clogging indicator can be ordered separately.

For dimensions and technical data of the clogging indicators, see

catalog sheets 60.20 and 60.30.

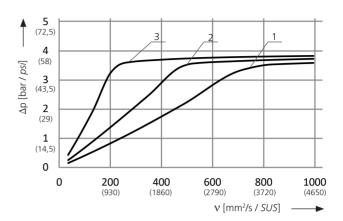

Order example:

FN1 040G-Y003-ED off-line filter with inlet port G1, outlet port G 3 4, water absorbing filter element 3 μ m, electrical differential pressure clogging indicator, without mounting clamps.

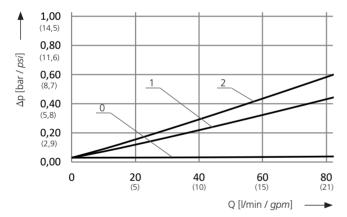
Remarks:

Combinations listed in this order code are standard units. If modifications are required, we kindly ask for your request. For preferred types (available in short time) see table at the last page of this data sheet.

FN1 040 with **EXAPOR®MAX 2** filter element Pressure drop as a function of the **flow volume** at v = 35 mm²/s / 162 SUS


0 = housing empty

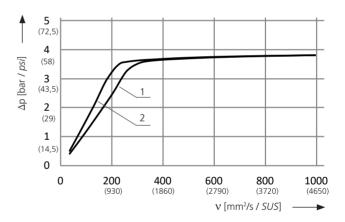
1 = with EXAPOR®MAX 2 filter element 10 μm

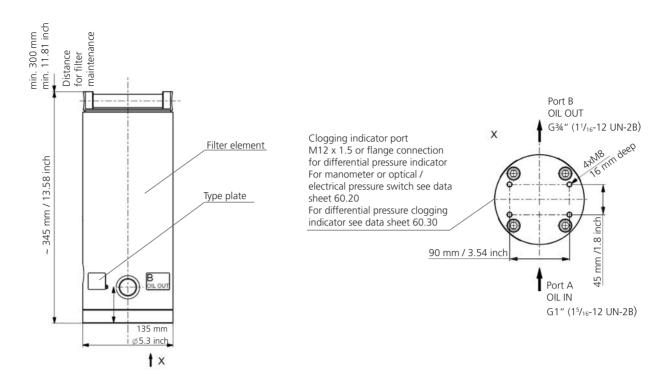

2 = with EXAPOR®MAX 2 filter element $5 \mu m$

 $3 = with EXAPOR®MAX 2 filter element 3 \mu m$

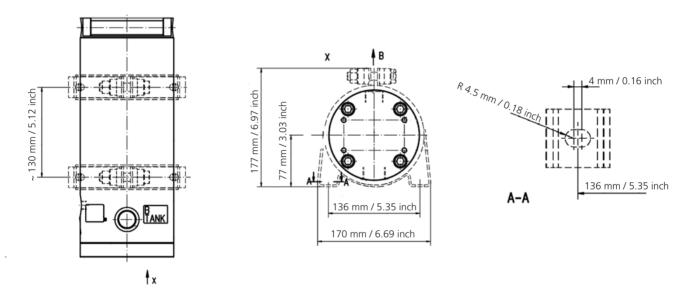
FN1 040 with **EXAPOR®MAX 2** filter element Pressure drop as a function of the **kinematic viscosity** at nominal flow

PN1 040 with **EXAPOR®AQUA** filter element Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s} / 162 \text{ SUS}$

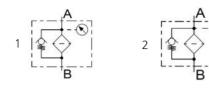



0 = housing empty

1 = with EXAPOR®AQUA filter element 7 µm

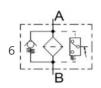

2 = with EXAPOR®AQUA filter element $3 \mu m$

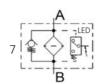
FN1 040 with **EXAPOR®AQUA** filter element Pressure drop as a function of the **kinematic viscosity** at nominal flow


Version with mounting clamps (order code M)

Preferred types

Order code	Port A	Port B	Filter fineness (β=200)	Dirt- holding capacity	Water capacity	Replacement filter element	Hydraulic symbol	SAP number
FN1 040G-V003-X	G1	G¾	3 µm	190 g	-	V7.1220-113	4	42496500
FN1 040G-V003-XD	G1	G¾	3 µm	190 g	-	V7.1220-113	8	42496700
FN1 040G-Y003-X	G1	G¾	3 µm	80.5 g	300 ml	Y7.1220-113	4	42496200
FN1 040G-Y003-XD	G1	G¾	3 µm	80.5 g	300 ml	Y7.1220-113	8	42496300
FN1 040U-V003-X	1 ⁵ / ₁₆ -12 UN-2B	1 ¹ / ₁₆ -12 UN-2B	3 µm	190 g	-	V7.1220-113	4	42496400
FN1 040U-V003-XD	1 ⁵ / ₁₆ -12 UN-2B	1 ¹ / ₁₆ -12 UN-2B	3 µm	190 g	-	V7.1220-113	8	42496600


Hydraulic symbols



Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse / burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Off-line Filters

FN 060 · FN 300

In-line mounting · Operating pressure up to 12 bar / 174 psi · Nominal flow rate up to 650 l/min / 172 gpm

Off-line Filter FN 060

Off-line Filter FN 300

Description

Application

Return-flow filter or off-line filter in hydraulic and lubrication systems.

Performance features

Protection against wear:

The EXAPOR®MAX 2 ultra-fine element meets the highest cleanliness standards, even at full flow.

Protection against failure:

The off-line filter includes a feature that guarantees a closed by-pass valve even at $v \le 200 \text{ mm}^2\text{/s} / 930 \text{ SUS}$ (cold start condition) within specified operating parameters.

Special design features

Housing cover:

The cover of the FN 060 can be opened without special auxiliary tools. Fold-out handle parts at the cover of the FN 300 facilitate the opening.

Automatic ventilation valve (only FN 300):

The quick automatic de-aeration after commissioning not only prevents components from consequential damage due to an excessive air content, but also avoids errors in the monitoring with optical particle counters.

Dirt retention valve:

At the bottom of the filter element, flown through from the inside to the outside, there is a dirt retention valve. This closes while pulling the filter element, which is hung up at the cover, out of the housing. Sedimented dirt is removed together with the filter element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- > low pressure drop
- > high dirt-holding capacities
- particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated, what guarantees optimum utilization of the filter life.

Materials:

Filter head: Aluminum alloy Filter housing: Steel (FN 060)

Aluminum alloy (FN 300)

Cover: Aluminum alloy Seals: NBR (FPM on request)

Filter media: EXAPOR®MAX 2 - inorganic, multi-layer

microfiber web

Accessories

Water-absorbing filter elements EXAPOR®AQUA are available on request.

For FN 060 there is a bleeder screw, and with Part No. FNS 060.1720 a fastening kit available on request.

Electrical and / or optical clogging indicators are available on request – with either one or two switching points resp. temperature suppression.

For dimensions and technical data of the clogging indicators see catalog sheet 60.30.

Characteristics

Operating pressure

Max. 12 bar / 174 psi (FN 060) Max. 10 bar / 145 psi (FN 300)

Nominal flow rate

Up to 650 l/min / 172 gpm (see Selection Chart, column 2) The nominal flow rates indicated by ARGO-HYTOS are based on the following features:

- ➤ closed by-pass valve at $v \le 200 \text{ mm}^2/\text{s} / 930 \text{ SUS}$
- element service life > 1000 operating hours at an average fluid contamination of 0.07 g per l/min / 0.27 g per gpm flow volume
- **>** flow velocity in the connection lines: up to 10 bar \leq 4.5 m/s / 145 psi \leq 14.8 ft/s

Filter fineness

3 μm(c) ... 10 μm(c) β-values according to ISO 16889 (see Selection Chart, column 4 and Diagram Dx)

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Selection Chart, column 5).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range

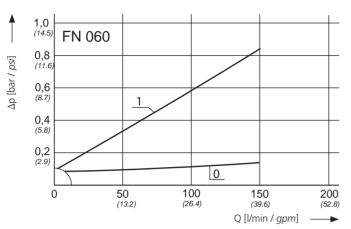
-30 °C ... +100 °C (temporary -40 °C ... +120 °C) -22 °F ... +212 °F (temporary -40 °F ... +248 °F)

Viscosity at nominal flow rate

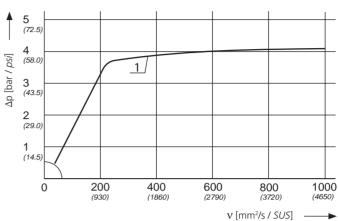
- at operating temperature: $v < 35 \text{ mm}^2/\text{s} / 162 \text{ SUS}$
- as starting viscosity: $v_{max} = 1200 \text{ mm}^2/\text{s} / 5560 \text{ SUS}$
- > at initial operation:

The recommended starting viscosity can be read from the diagram D (pressure drop as a function of the kinematic viscosity) as follows: Find the 70% Δp of the cracking pressure of the by-pass valve on the vertical axis. Draw a horizontal line so that it intersects the Δp curve at a point. Read this point on the horizontal axis for the viscosity.

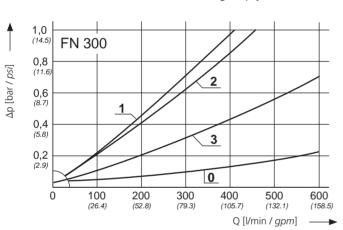
Mounting position

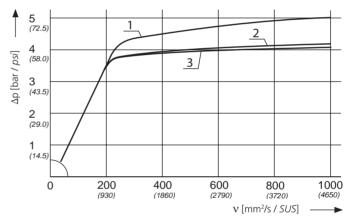

Vertical, connection port at the bottom

Connection

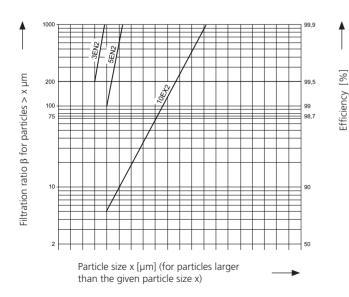

Threaded ports according to ISO 228 or DIN 13 (FN 060) or flange mounting according to SAE-J518 (FN 300). For sizes see Selection Chart, column 6 (other port threads on request).

∆p-curves for complete filters in Selection Chart, column 3


Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s} / 162 \text{ SUS } (0 = \text{casing empty})$


Pressure drop as a function of the **kinematic viscosity** at nominal flow

Pressure drop as a function of the **flow volume** at $v = 35 \text{ mm}^2/\text{s} / 162 \text{ SUS } (0 = \text{casing empty})$



Pressure drop as a function of the **kinematic viscosity** at nominal flow

Filter fineness curves in Selection Chart, column 4

Dx Filtration ratio β as a function of particle size x obtained by the Multi-Pass Test according to ISO 16889

The abbreviations represent the following $\beta\text{-values}$ resp. finenesses:

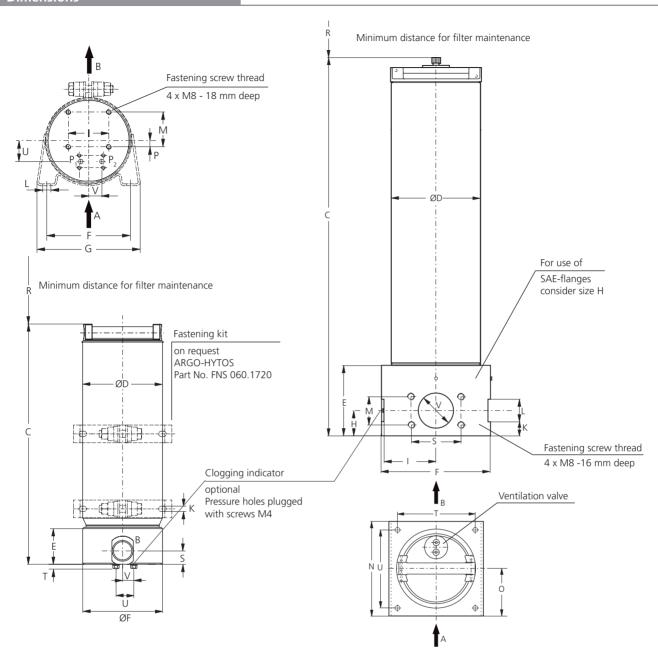
With EXAPOR®MAX2 and paper elements:

3EN2	=	β_3 (c)	= 200	EXAPOR®MAX 2
5EN2	=	$\overline{\beta}_{5}^{s}$ (c)	= 200	EXAPOR®MAX 2
10EX2	=	$\overline{\beta}_{10}^{s}$ (c)	= 200	EXAPOR®MAX 2

For special applications, finenesses differing from these curves are also available by using special composed filter media.

50 KMO.		Worling H	on it is a series of the serie	\$ 10 00 10 10 10 10 10 10 10 10 10 10 10	iller S.	of the little of	A ARELIO ARE	crodition of the control of the cont	in the second se	e di		Neigh History	. Justin	nid de la
	l/min	gpm			g		bar	psi			kg	lbs		
1		2	3	4	5	6	-	7	8	9		10	11	12
FN 060-193	60	15.9	D1 /1	3EN2	290	G1	3.5	51	1	V7.1230-153	5	11.0	DG 041-32	-
FN 060-273	115	30.4	D1 /1	5EN2	220	G1	3.5	51	2	V7.1230-53	5	11.0	optional	-
FN 300-163	250	66.0	D2 /1	3EN2	740	SAE2½	3.5	51	2	V7.1560-103	20	44.1	optional	*
FN 300-153	300	79.3	D2 /2	5EN2	600	SAE2½	3.5	51	2	V7.1560-03	20	44.1	optional	*
FN 300-156	650	171.7	D2 /3	10EX2	400	SAE2½	3.5	51	2	V7.1560-06	20	44.1	optional	*

^{*} with automatic ventilation valve


Optical or electrical indicators are available to monitor the clogging condition of the element.

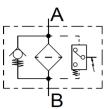
For appropriate clogging indicators, please refer to catalog sheet 60.30.

Remarks:

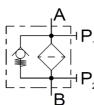
- > The response / switching pressure of the clogging indicator must be lower than the cracking pressure of the by-pass valve (see Selection Chart, column 7).
- > Clogging indicators are optionally available and will be supplied separately if ordered.
- > The filter units listed in this chart are standard units. If modifications are required, e.g. with water-absorbing filter elements or with mounting set, we kindly ask for your request.

Page 22 www.argo-hytos.com

Measurements in mm


Туре	A/B	С	D	Е	F	G	Н	I	K	L	M	N	0	Р	R	S	Т	U	V
FN 060	G1	410	140	63	136	170	_	66	9	12	56.5	_	_	9.5	300	23	4	34	21
FN 300	SAE 21/2	775	160	126	200	-	45	96	25	40	50.8	195	97.5	-	700	88.9	170	165	63

Measurements in inch


Туре	A / B	С	D	Е	F	G	Н	I	K	L	M	N	0	Р	R	S	Т	U	V
FN 060	G1	16.14	5.51	2.48	5.35	6.69	-	2.60	0.35	0.47	2.22	-	-	0.37	11.81	0.91	0.16	1.34	0.83
FN 300	SAE 21/2	30.51	6.30	4.96	7.87	-	1.77	3.78	0.98	1.57	2.00	7.68	3.84	-	27.56	3.50	6.69	6.50	2.48

Symbol

1

2

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse / burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Off-line Filter

FNS 040

Operating pressure up to 320 bar / 4640 psi · Nominal flow rate up to 6 l/min / 1.6 gpm · Water capacity approx. 350 ml / 0.09 gal

Off-line Filter FNS 040

Description

Application

Suitable for high-pressure circuits in hydraulic and lubrication systems.

Performance features

Protection against wear:

The EXAPOR®MAX 2 ultra-fine element meets the highest cleanliness standards, even at full flow.

Protection against failure:

The off-line filter includes a feature that guarantees a closed by-pass valve even at $v \le 200 \text{ mm}^2/\text{s} / 930 \text{ SUS}$ (cold start condition) within specified operating parameters.

Special design features

Housing cover:

The cover can be opened without special auxiliary tools.

Flow control valve:

Through a pressure compensated flow control valve, the FNS off-line filters are directly connected to the high pressure pipe. The surplus volume (e.g. in circuits with fixed displacement pumps) from the high-pressure circuit is cleaned by the ultra-fine filter element.

Dirt retention valve:

At the bottom of the filter element, flown through from the inside to the outside, there is a dirt retention valve. This closes while pulling the filter element, which is hung up at the cover, out of the housing. Sedimented dirt is removed together with the filter element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
-) low pressure drop
- high dirt-holding capacities
- particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated, what guarantees optimum utilization of the filter life.

Materials

Filter housing: Aluminum alloy
Cover: Aluminum alloy
Seals: NBR (FPM on request)
Filter media: EXAPOR®AQUA

Accessories

EXAPOR®MAX 2 filter elements are available on request.

Characteristics

Nominal flow rate

Up to 6 l/min / 1.6 gpm (see Selection Chart, column 2) Refers to the medium flow rate of the flow control valve. With selection of the flow control valve, a sufficient surplus volume from the high-pressure circuit has to be guaranteed. If necessary, the machine manufacturer should be consulted.

Connection

Threaded port according to ISO 228 or DIN 13. Sizes see Selection Chart, column 6 (other port threads on request)

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range

-30 °C ... +100 °C (temporary -40 °C ... +120 °C) -22 °F ... +212 °F (temporary -40 °F ... +248 °F)

Viscosity at nominal flow rate

> at operating temperature:v < 35 mm²/s / 162 SUS

• as starting viscosity: $v_{max} = 400 \text{ mm}^2/\text{s} / 5560 \text{ SUS}$

Operating pressure

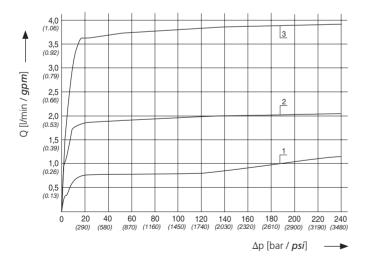
Max. 320 bar / 4640 psi

(max. 12 bar / 174 psi without pressure compensated flow

control valve)

Minimum inlet pressure at the pressure compensated flow

control valve: 10 bar / 145 psi


Mounting position

Vertical, connection port at the bottom

Diagrams

∆p-curves for complete filters in Selection Chart, column 3

Flow volume as a function of the **differential pressure** at the flow control valve at $v = 35 \text{ mm}^2/\text{s} / 162 \text{ SUS}$

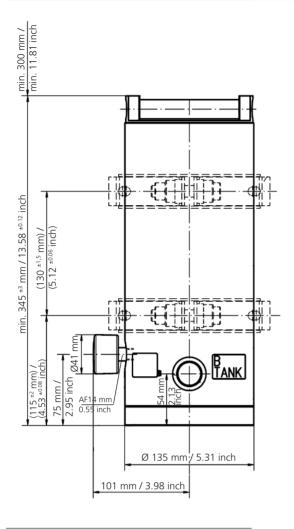
Softyo.		Worling	onto citto	inologi	S distribution of the second		pital John	in Service Ser	The defe	Nie	Class	noidia de la cut	Lee Control of the Co
	l/min	gpm		g	ml	gal			kg	lbs			
1	2	2	3	4		5	6	7		8	9	10	11
FNS 040-1105	6	1.6	7µm	65	350	0.09	G1/G3/4	Y7.1220-05	8.8	19.4	optical	FNS 060.1550	_
FNS 040-1115	4	1.06	7µm	65	350	0.09	G1/G34	Y7.1220-05	7.2	15.9	optical	FNS 060.1540	_
Pressure compe	ensated	flow co	ntrol va	alve -	inlet p	ressure	min. 10 b	ar / 145 psi, ma	x. 32) bar / 4	4640 psi:		
FNS 060.1520	1	0.26					G1/G3/4						_
FNS 060.1530	2	0.53					G1/G3/4						_
FNS 060.1540	4	1.06					G1/G¾						_

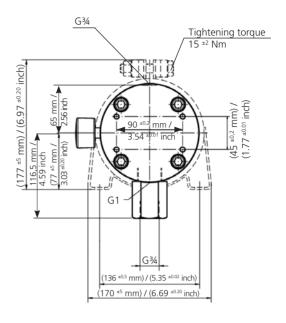
Combinations with other filter elements are available on request.

Possible elements to choose:

 $\begin{array}{cccc} V7.1220\text{-}113 & 3 \ \mu\text{m} \\ V7.1220\text{-}13 & 5 \ \mu\text{m} \\ V7.1220\text{-}06 & 10 \ \mu\text{m} \\ \end{array}$

Y7.1220-05 7 μ m, water absorbing Y7.1220-113 3 μ m, water absorbing


The housing of the off-line filter is designed for a max. operating pressure of 12 bar / 174 psi. To avoid back pressures, no components such as ball valves must be inserted at the housing outlet and in the continuative circuit.


For contamination monitoring, manometers or electrical pressure switches can be used.

For appropriate clogging indicators, please refer to catalog sheet 60.20.

Remarks:

- The cut-in pressure of the pressure switch must be lower than the cracking pressure of the by-pass valve (see Selection Chart, column 7).
- > Clogging indicators and flow control valves are optionally available and will be supplied separately if ordered.
- > The off-line filters listed in this chart are standard units. If modifications are required, e.g. with water-absorbing filter elements, we kindly ask for your request.

Version FNS 040-1115 without clamps. Clamps may be ordered separately. Oder Code FNS 060.1730 (2 clamps).

Symbol

1

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941 Verification of collapse / burst pressure rating
 ISO 2942 Verification of fabrication integrity (Bubble Point Test)
 ISO 2943 Verification of material compatibility with fluids
 ISO 3968 Evaluation of pressure drop versus flow characteristics
 ISO 16889 Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
 ISO 23181 Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Page 28 www.argo-hytos.com

Off-line Filter

FNS 060

With flow control valve · Operating pressure up to 320 bar / 4640 psi · Nominal flow rate up to 4 l/min / 1.1 gpm

Off-line Filter FNS 060

Description

Application

Suitable for high-pressure circuits in hydraulic and lubrication systems.

Performance features

Protection against wear:

The EXAPOR®MAX 2 ultra-fine element meets the highest cleanliness standards, even at full flow.

Protection against failure:

The off-line filter includes a feature that guarantees a closed by-pass valve even at $v \le 200 \text{ mm}^2/\text{s} / 930 \text{ SUS}$ (cold start condition) within specified operating parameters.

Special design features

Housing cover:

The cover can be opened without special auxiliary tools.

Flow control valve:

Through a pressure compensated flow control valve, the FNS off-line filters are directly connected to the high pressure pipe. The surplus volume (e.g. in circuits with fixed displacement pumps) from the high-pressure circuit is cleaned by the ultra-fine filter element.

Dirt retention valve:

At the bottom of the filter element, flown through from the inside to the outside, there is a dirt retention valve. This closes while pulling the filter element, which is hung up at the cover, out of the housing. Sedimented dirt is removed together with the filter element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
-) low pressure drop
- high dirt-holding capacities
- particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated, what guarantees optimum utilization of the filter life.

Materials

Filter head: Aluminum alloy

Filter housing: Steel

Cover: Aluminum alloy
Seals: NBR (FPM on request)

Filter media: EXAPOR®MAX 2 - inorganic, multi-layer

microfiber web

Accessories

Water-absorbing filter elements EXAPOR®AQUA are available on

reauest

Electrical and / or optical clogging indicators are available on

request.

For dimensions and technical data see catalog sheet 60.20.

Characteristics

Nominal flow rate

Up to 4 l/min / 1.1 gpm (see Selection Chart, column 2) Refers to the medium flow rate of the flow control valve. With selection of the flow control valve, a sufficient surplus volume from the high-pressure circuit has to be guaranteed. If necessary, the machine manufacturer should be consulted.

Connection

Threaded port according to ISO 228 or DIN 13. Sizes see Selection Chart, column 6 (other port threads on request)

Filter fineness

3 μm(c)

β-values according to ISO 16889 (see Selection Chart, column 4 and diagram Dx)

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Selection Chart, column 5).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range

-30 °C ... +100 °C (temporary -40 °C ... +120 °C) -22 °F ... +212 °F (temporary -40 °F ... +248 °F)

Viscosity at nominal flow rate

• at operating temperature: $v < 35 \text{ mm}^2/\text{s} / 162 \text{ SUS}$ • as starting viscosity: $v_{\text{max}} = 400 \text{ mm}^2/\text{s} / 5560 \text{ SUS}$

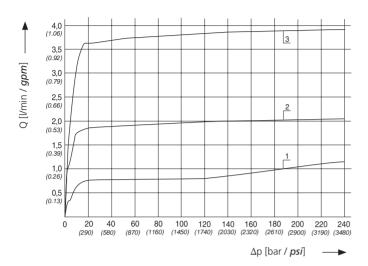
Operating pressure

Max. 320 bar / 4640 psi

(max. 5 bar / 73 psi without pressure compensated flow control

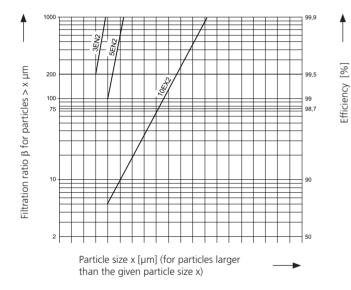
valve

Minimum inlet pressure at the pressure compensated flow


control valve: 10 bar / 145 psi

Mounting position

Vertical, connection port at the bottom


∆p-curves for complete filters in Selection Chart, column 3

Flow volume as a function of the **differential pressure** at the flow control valve at $v = 35 \text{ mm}^2/\text{s} / 162 \text{ SUS}$

Filter fineness curves in Selection Chart, column 4

Filtration ratio β as a function of particle size x obtained by the Multi-Pass Test according to ISO 16889

The abbreviations represent the following β -values resp. finenesses:

With EXAPOR®MAX2 and paper elements:

3EN2	=	$\overline{\beta}_{3}$ (c)	= 200	EXAPOR®MAX 2
5EN2	=	$\frac{\overline{\beta}}{\beta_5}$ (c)	= 200	EXAPOR®MAX 2
10EX2	=	$\overline{\beta}_{10}$ (c)	= 200	EXAPOR®MAX 2

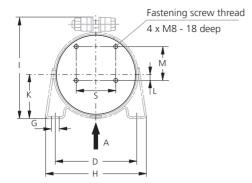
For special applications, finenesses differing from these curves are also available by using special composed filter media.

Zort No.		Working H	on is sure of the	1000 100 100 100 100 100 100 100 100 10		of the state of th	A AR SUID AR	Crodition Crodition	o die sul	THE SECOND SECON	S. Siller Se	Notice The Notice of the Notic	, Joseph	in the state of th	County Telegraphic
	l/min	gpm			g		bar	psi			kg	lbs			
1	2	2	3	4	5	6		7	8	9		10	11	12	13
FNS 060-163	*	*	D1/*	3EN2	1450	G1/G1	3.5	51	1	V7.1230-153	5.2	11.5	option	option	basic unit
FNS 060-183	4	1.06	D1 /3	ЗЕ-А	130	G1/G1	3.5	51	2	Y7.1230-153	5.3	11.7	option	FNS 0	60.1540
Pressure comp	ensated	d flow c	ontrol v	alve - in	et press	sure min.	10 ba	r / 14!	5 psi,	max. 320 bar	/ 464	0 psi:			
FNS 060.1520	1	0.26	D1 /1			G1/G3/4									_
FNS 060.1530	2	0.53	D1 /2			G1/G3/4									_
FNS 060.1540	4	1.06	D1 /3			G1/G¾									-

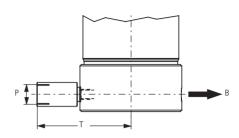
^{*} see nominal flow rate of the flow control valves

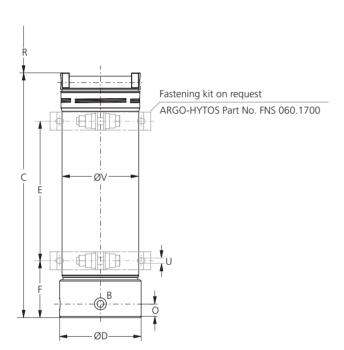
The housing of the off-line filter is designed for a max. operating pressure of 5 bar / 73 psi. To avoid back pressures, no components such as ball valves must be inserted at the housing outlet and in the continuative circuit.

For contamination monitoring, manometers or electrical pressure switches can be used.

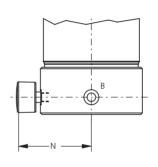

For appropriate clogging indicators, please refer to catalog sheet 60.20.

Remarks:

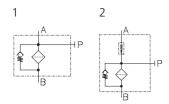

- The cut-in pressure of the pressure switch must be lower than the cracking pressure of the by-pass valve (see Selection Chart, column 7).
- > Clogging indicators and flow control valves are optionally available and will be supplied separately if ordered.
- > The off-line filters listed in this chart are standard units. If modifications are required, e.g. with water-absorbing filter elements, we kindly ask for your request.


Page 32 www.argo-hytos.com

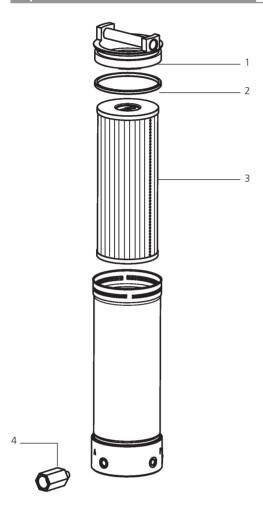
Dimensions



Version with manometer


Measurements in mm

Туре	A/B	С	D	Е	F	G	Н	I	K	L	M	N	0	Р	R	S	Т	U	V
FNS 060	G1	410	136	233	95	12	170	169	73	9.5	56.5	103	23	G¾	300	66	119	9	128


Measurements in inch

Туре	A/B	С	D	Е	F	G	Н	I	K	L	M	N	0	Р	R
FNS 060	G1	16.14	5.35	9.17	3.74	0.47	6.69	6.65	2.87	0.37	2.22	4.06	0.91	G¾	11.81
Туре	S	Т	U	V											
FNS 060	2.60	4.69	0.35	5.04											

Symbols

Spare Parts

Pos.	Designation	Part No.
1	Cover	FNA 008.1250
2	O-ring	N007.1175
3	Filter element	s. Selection Chart
4	Flow control valve	s. Selection Chart

The functions of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

Verification of collapse / burst pressure rating
Verification of fabrication integrity (Bubble Point Test)
Verification of material compatibility with fluids
Evaluation of pressure drop versus flow characteristics
Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Page 34 www.argo-hytos.com

Off-line Filter Unit with DC motor

FNA 014

Operating pressure up to 4 bar / 58 psi · Nominal flow rate up to 14 l/min / 4.2 gpm · 24 VDC electric motor S1 duty cycle

FNA 014 Off-line Filtration Unit

EXAPOR®MAX 2 Filter Element

Description

The FNA 014 is an off-line filter unit designed for installation in hydraulic or lubrications systems. The unit can be equipped with a 24 or 12 VDC electric motor.

The EXAPOR®MAX 2 ultra-fine filter element is the heart of the FNA 014. A high separation efficiency guarantees excellent fluid cleanliness levels and thereby maximum protection of the machine. Optionally, the unit can be equipped with EXAPOR® AQUA elements which remove both water and solid particles. The high dirt holding capacity of the filter elements makes the FNA 014 an economical choice for our customers.

Characteristics

Pump design

Gerotor pump

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info service sheet 00.20). Other fluids on request.

Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F

Ambient temperature range

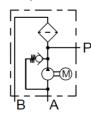
0 °C ... +50 °C / +32 °F ... +122 °F

Viscosity range

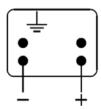
15 - 200 mm²/s - continuous operation

15 - 400 mm²/s - short-term operation

Operating position


Vertical, motor at the bottom

Recommended tank capacities


100 l ... 1500 l / 25 ... 400 gal

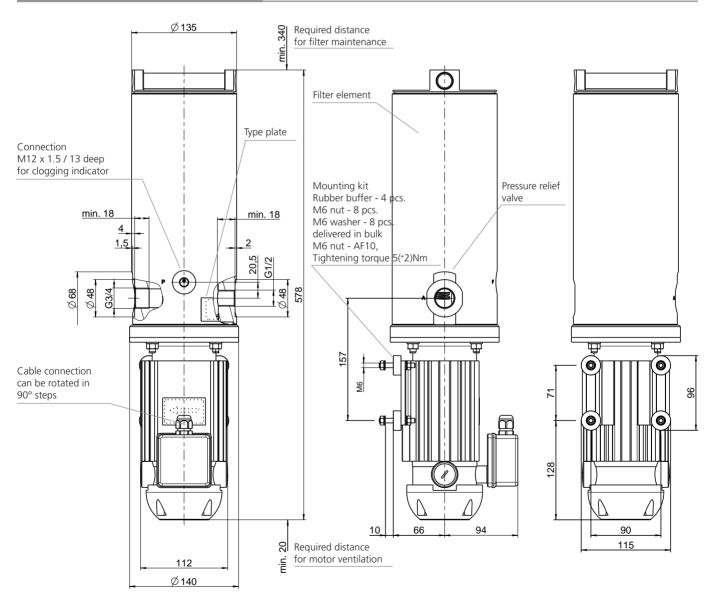
Symbols / Connections

1. Hydraulic

2. Electric*

- * Current consumption (tested with oil VG 46, temp. +20 °C / +68 °F):
 - free flow, no. filter element: 5 A
- closed flow (by-pass valve opened): 10 A

Technical data			
Nominal flow rate	up to 14 l/min / 3.7 gpm		
Operating pressure	max. 4 bar / 58 psi		
Filter fineness (Bx(c) = 200 according to ISO 16889:1999)	3 μm EXAPOR®AQUA 7 μm		
Dirt-holding capacity	up to 280 g		
Water capacity	up to 340 ml		
Electric motor*	24 VDC; 280 W; S1		
Suction port (inlet)**	G3/4		
Pressure port (outlet)**	G1/2		
Suction height max.	1.5 m / 4.9 ft		
Weight	approx. 11 kg / 24.3 lbs		
Recommended clogging indicator	DG 200-16 Others: see data sheet 60.20		


Order code	
FNA 014-16553	3 μm EXAPOR®MAX 2 element
FNA 014-16555	7 µm EXAPOR®AQUA element

Other versions available on request.

Spare filter element code	Fineness Bx(c) = 200	Dirt / water capacity at 14 l/min / 3.7 gpm			
V7.1220-113	3 μm	280 g			
V7.1220-13	5 μm	270 g			
V7.1220-06	10 μm	240 g			
EXAPOR®AQUA for filtration combined with dewatering					
Y7.1220-05	7 μm	120 g / 340 ml			
Y7.1220-113	3 µm	190 g / 300 ml			

- * Version with 12 VDC motor available on request.
- ** Versions with UNF ports available on request.

Dimensions

Off-line Filter Units

FNA1 008 / 016

Operating pressure up to 4 bar / 58 psi · Nominal flow rate up to 19 l/min / 5.0 gpm

Off-line Filter Unit

Description

Application

In the by-pass flow of hydraulic and lubrication systems.

Performance features

Protection against wear:

By means of filter elements that meet the highest demands regarding cleanliness class and dirt-holding capacity.

Protection against failure:

By means of continuous partial filtration, excellent cleanliness classes can be achieved. Machine failures, due to contamination, are reduced, maintenance and oil change intervals are extended.

Special design features

Housing cover:

The cover can be opened without special auxiliary tools.

Compact:

The unique cover design allows that the filter element can be changed without losing any oil.

No pipes are needed except for the connection lines. The filter units feature low power consumption and minimal operational noise.

Pressure relief valve:

An integrated PRV (pressure relief valve) protects against overload.

Dirt retention valve:

At the bottom of the filter element, flown through from the inside to the outside, there is a dirt retention valve. This closes while pulling the filter element, which is hung up at the cover, out of the housing. Sedimented dirt is removed together with the filter element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- > large filter surfaces
- > low pressure drop
- > high dirt-holding capacities
- > particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated, what guarantees optimum utilization of the filter life.

Materials

Pump housing: Aluminum alloy

Filter housing: Steel

Cover: Aluminum alloy
Seals: NBR (FPM on request)

Filter media: EXAPOR®MAX 2 - inorganic, multi-layer

microfiber web

Accessories

With Part No. FNA 008.1700, a mounting set is available, that facilitates the fitting of incoming and outgoing pipes onto an existing filling / venting connection.

Electrical and / or optical clogging indicators may be ordered together with the off-line filter unit. For choosing the proper clogging indicator see table Clogging Indicator in the Ordering Code. A separate order of the clogging indicator is possible. For dimensions and technical data of the clogging indicators - see catalog sheet 60.30.

Hydraulic fittings and hoses for installation of the unit in the system are available on request.

For installation in filter cooling circuits, a version with by-pass valve is available on request.

Characteristics

Nominal flow rate

Up to 19 l/min at v = 35 mm²/s / up to 5 gpm at v = 162 SUS

Viscosity range

15 - 250 mm²/s / 70 - 1160 SUS - continuous operation 15 - 400 mm²/s / 70 - 1860 SUS - short term operation

Off-line filter units for higher viscosities (up to 1500 mm²/s / 6950 SUS) see catalog sheet FNA1HV 008 / 016 no. 80.41

Connection

Threaded port according to ISO 228 (see Ordering Code and Dimension Drawing)

Filter fineness

3 µm(c) ... 10 µm(c) for EXAPOR®MAX 2 separating solid particles 3 µm(c) ... 7 µm(c) for EXAPOR®AQUA separating water and solid particles

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Ordering Code, table Filter Element).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F (also see viscosity range)

Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

Suction height

max. 1 m / 3.28 ft (unfilled) max. 6 m / 19.69 ft (in operating condition)

Operating pressure

Max. 4 bar / 58 psi, pressure protection with pressure relief valve

Operating position

Vertical, motor at the bottom

Recommended tank capacities

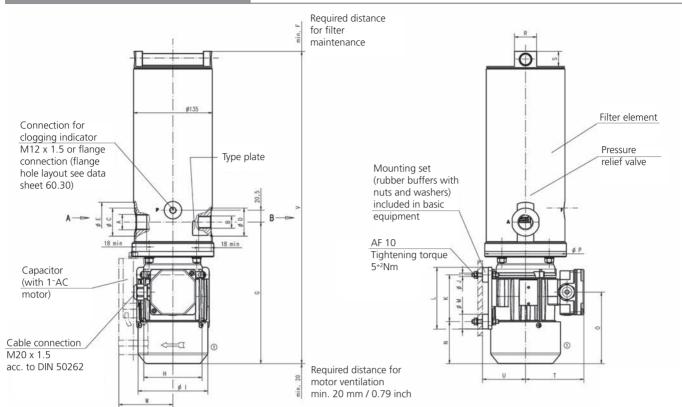
FNA1 008: up to 800 | / 200 gal FNA1 016: up to 1500 | / 400 gal

Off-line filter units for tank capacities exceeding 1500 I / 400 gal see catalog sheet FNA 045 no. 80.50.

					FN	IA1					_ /	
Type of filter unit				Code								
Off-line filter unit				FNA1								
Nominal flow rate*				Code								
8 l/min / 2.11 gpm				008								
16 l/min / 4.23 gpm				016								
Connection port				Code								
Size	Dimension	s type r	10.									
In: G¾ Out: G½	1 0			G								
In: 1 ¹ / ₁₆ -12 UN-2B Out: ³ / ₄ -16 UN-2B	3 0	r 4		U								
Filter element								Co	ode	Ш		
	Dirt-hold	ing cap	s (β=200 acity acc water ca	ording to)		ilter ment					
		FNA	1 008	008 FNA1								
EXAPOR®MAX 2	3 μm	49	0 g 280		g V7.1		220-113	V003				
EXAPOR®MAX 2	5 μm	46	50 g 270 g		g	V7.1	220-13	V005				
EXAPOR®MAX 2	10 μm	34	10 g 190 g		g	V7.1	220-06	V(010			
EXAPOR®AQUA	7 μm	64 g /	320 ml 38 g / 19		90 ml	Y7.1	220-05	Y	007			
EXAPOR®AQUA	3 µm	45 g /	340 ml	25 g / 2	05 ml	Y7.12	220-113	Y	003			
Electric motor*									Cod	de	$\vdash \vdash \vdash$	
Phase(s), voltage	Frequency	FN	Power A 1 008			ctric ection	Dimens type r					
3~400/460 VAC	50/60 Hz	0.3	25 / 0.45	5 kW		1	1 or	3	400	50		
1~230 VAC	50/60 Hz	0	25 / 0.45	5 kW		2	2 or	4	230	50		
1~110 VAC	50/60 Hz	0	25 / 0.45	5 kW		2	2 or	4	110	50		
Clogging indicator											Cod	е
Тур	e			de of cator		sheet o.	Connec	tion	Hydra sym			
Manometer	optical		DG 2	00-16	60	.20	M12 x	1.5	1		0	
Pressure switch	electrical			13-21	60	.20	M12 x	1.5	2		E	
Pressure switch	optical / elect			15-12	60	.20	M12 x	1.5	3		EO	
	without indicator						M12 x	1.5	4		X	
Differential	optical		DG 0	42-01	60	.30	Flang	ge	5		OD	,
pressure clogging indicator	electrical			41-32		.30	Flang	ge	6		ED	
JJ J	electrical + or	otical		1-32 +	60	.30	Flang	je	7		EOI)

 $^{^{\}star}$ Indications at 50 Hz. At 60 Hz, the value increases by approx. 20 %. For version with DC motor, 24 or 12 V see data sheet FNA 014 no. 80.35

without indicator


Page 39 www.argo-hytos.com

DG 041.1200

Flange

8

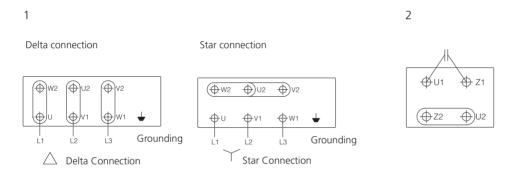
XD

Weight approx. 11 kg / 24.3 lbs

Measurements in mm

Type*		Α			В		С	D	Е	F	G	Н	- 1	J	K	L	M
1		$G^{3}/_{4}$			$G^{1}/_{2}$		48	48	68	340	243	100	120	M6	80	106	25
2		$G^3/_4$			$G^{1}/_{2}$		48	48	68	340	243	100	120	M6	80	106	25
3	¹¹ / ₁₆	-12 UN	I-2B	³ / ₄ -	16 UNF	-2B	41	30	68	340	243	100	120	M6	80	106	25
4	¹¹ / ₁₆	-12 UN	I-2B	³ / ₄ -	16 UNF	-2B	41	30	68	340	243	100	120	M6	80	106	25
Turne *	NI	0	Р	R	S	т	U	V	W								
Type*	N	U	Р	ĸ	5	1	U	V	VV								
1	72	123	140	38	26	101	74	535	-								
2	72	123	140	38	26	101	74	535	100								
3	72	123	140	38	26	101	74	535	-								
4	72	123	140	38	26	101	74	535	100								

Measurements in inch


Type*		Α			В		С	D	Е	F	G	Н	I	J	K	L	М
1		$G^3/_4$			$G^{1}/_{2}$		1.89	1.89	2.68	13.39	9.57	3.94	4.72	M6	3.15	4.17	0.98
2		$G^{3}/_{4}$			$G^{1}/_{2}$		1.89	1.89	2.68	13.39	9.57	3.94	4.72	M6	3.15	4.17	0.98
3	11/16	-12 UN	-2B	3/4-	16 UNF	-2B	1.61	1.18	2.68	13.39	9.57	3.94	4.72	M6	3.15	4.17	0.98
4	¹¹ / ₁₆	-12 UN	-2B	³ / ₄ -	16 UNF	-2B	1.61	1.18	2.68	13.39	9.57	3.94	4.72	M6	3.15	4.17	0.98
Type*	N	0	Р	R	S	Т	U	V	W								
Type			•	- 11			•	•	•••								
1	2.83	4.84	5.51	1.50	1.02	3.98	2.91	21.06	-								
2	2.83	4.84	5.51	1.50	1.02	3.98	2.91	21.06	3.94								
3	2.83	4.84	5.51	1.50	1.02	3.98	2.91	21.06	-								
4	2.83	4.84	5.51	1.50	1.02	3.98	2.91	21.06	3.94								

^{*}Type see Ordering Code (Dimensions Type no.)

Page 40 www.argo-hytos.com

Hydraulic symbols

Electric connections

Order example

FNA1 016G-V003/23050-E

Off-line filter unit with nominal flow rate 16 l/min / 4.23 gpm, inlet port $G\frac{3}{4}$, outlet port $G\frac{1}{2}$, EXAPOR®MAX 2 filter element, fineness 3 μ m, electric motor $1\sim230$ VAC and electric clogging indicator

Dimensions type: 2

Remarks:

Combinations listed in this data sheet are standard units. If modifications are required, we kindly ask for your request.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Off-line Filter Units for High Viscosities

FNA1HV 008 / 016

Viscosity range 15-1500 mm²/s / 70-6950 SUS · Operating pressure up to 6 bar / 87 psi · Nominal flow rate up to 16 l/min / 4.23 gpm

FNA1HV Off-line Filter Unit

Description

Application

In the by-pass flow of hydraulic and lubrication systems. The unit is designed to operate with viscosities between 15 and 1500 mm²/s / 70 and 6950 SUS. This allows, for example, the filtration of transmission fluids and high viscosity oils even at low temperatures.

Performance features

Protection against wear:

By means of filter elements that meet the highest demands regarding cleanliness class and dirt-holding capacity.

Protection against failure:

By means of continuous partial filtration, excellent cleanliness classes can be achieved. Machine failures, due to contamination, are reduced, maintenance and oil change intervals are extended.

Special design features

Housing cover:

The cover can be opened without special auxiliary tools.

Compact:

The unique cover design allows that the filter element can be changed without losing any oil.

No pipes are needed except for the connection lines. The filter units feature low power consumption and minimal operational noise.

Pressure relief valve:

An integrated PRV (pressure relief valve) protects against overload.

Dirt retention valve:

At the bottom of the filter element, flown through from the inside to the outside, there is a dirt retention valve. This closes while pulling the filter element, which is hung up at the cover, out of the housing. Sedimented dirt is removed together with the filter element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- > low pressure drop
- > high dirt-holding capacities
- > particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated, what guarantees optimum utilization of the filter life.

Materials

Pump housing: Aluminum alloy

Filter housing: Aluminum alloy, powder painted RAL 5015

Cover: Aluminum alloy
Seals: NBR (FPM on request)

Filter media: EXAPOR®MAX 2 - inorganic, multi-layer

microfiber web

EXAPOR®AQUA - combination of water absorbing filter layers and inorganic,

multi-layer microfiber web

Remarks

Other colors of the filter housing are available on request.

Accessories

With Part No. FNA 008.1700, a mounting set is available, that facilitates the fitting of incoming and outgoing pipes onto an existing filling / venting connection.

Electrical and / or optical clogging indicators may be ordered together with the off-line filter unit. For choosing the proper clogging indicator see table Clogging Indicator in the Ordering Code. A separate order of the clogging indicator is possible. For dimensions and technical data of the clogging indicators see catalog sheet 60.30.

Hydraulic fittings and hoses for installation of the unit in the system are available on request.

Characteristics

Nominal flow rate

Up to 16 l/min / 4.23 gpm

Viscosity range

 $15 - 1500 \text{ mm}^2\text{/s} / 70 - 6950 \text{ SUS}$ - continuous operation $15 - 2000 \text{ mm}^2\text{/s} / 70 - 9260 \text{ SUS}$ - short term operation

Connection

Threaded port according to ISO 228 (see Dimension Drawing)

Filter fineness

3 μ m(c) ... 10 μ m(c) for EXAPOR®MAX 2 separating solid particles 3 μ m(c) ... 7 μ m(c) for EXAPOR®AQUA separating water and solid particles

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Ordering Code, table Filter Element).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range of fluids

 $0 \, ^{\circ}\text{C} \dots +65 \, ^{\circ}\text{C} / +32 \, ^{\circ}\text{F} \dots +149 \, ^{\circ}\text{F}$ (also see viscosity range)

Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

Maximum suction height

1.5 m / 4.9 ft

Operating pressure

Max. 6 bar / 87 psi, pressure protection with pressure relief valve

Operating position

Vertical, motor at the bottom

Weight

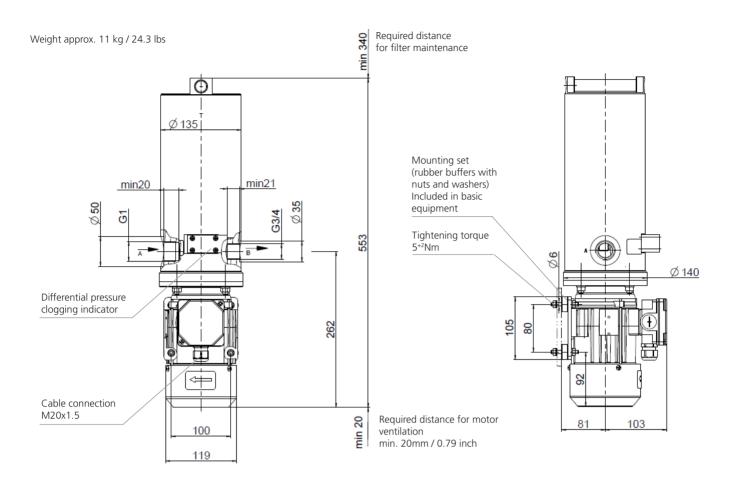
Approx. 11 kg / 24.3 lbs

Recommended tank capacities

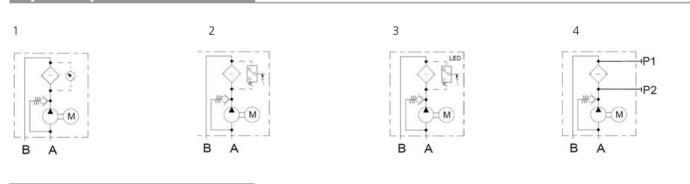
Up to 1500 I / 400 gal

			<u>F</u>	NA1HV		/_
Type of filter unit			Code			
Off-line filter unit, high	h viscosity v	ersion	FNA1HV			
Nominal flow rate*	· ·		Code			
8 l/min / 2.11 gpm			008			
16 l/min / 4.23 gpm			016			
]		
Connection ports			Code			
In: G1 Out: G ³ / ₄			G			
In: 1 ⁵ / ₁₆ -12 UN-2B Out: 1 ¹ / ₁₆ -12 UN-2B			U			
Filter element					Code	\square
	Dirt-hold	Fineness (β=200) ing capacity acco 6889 / water cap	ording to	Spare filter element code		
		FNAHV1 008	FNAHV1 016			
EXAPOR®MAX 2	3 µm	490 g	280 g	V7.1220-113	V003	
EXAPOR®MAX 2	5 μm	460 g	270 g	V7.1220-13	V005	
EXAPOR®MAX 2	10 μm	340 g	190 g	V7.1220-06	V010	
EXAPOR®AQUA	7 µm	64 g / 320 ml	38 g / 190 ml	Y7.1220-05	Y007	
EXAPOR®AQUA	3 µm	45 g / 340 ml	25 g / 205 ml	Y7.1220-113	Y003	
Electric motor*					Code	
	requency	Power FNA1H	IV 008 / 016	Elec. connection	Code	
-	50/60 Hz	0.37 / 0		1	40050	
	50/60 Hz	0.37 / 0		2	23050	
Clogging indicator						Code
Туре		Code of indicator	Connection	Datasheet number	Hydraulic symbol	
	optical	DG 042-04	Flange	60.30	1	OD
pressure e	electrical	DG 041-32	Flange	60.30	2	ED
indicator el	ectrical + optical	DG 041-32 DG 041.1200	Flange	60.30	3	EOD
Without clogging indica	ator				4	XD

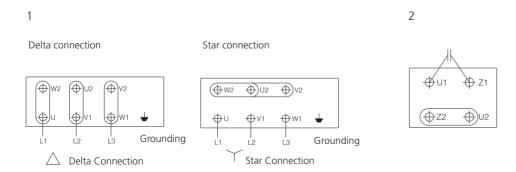
 $^{^{\}star}$ Indications at 50 Hz. At 60 Hz, the value increases by approx. 20 %.


Order example:

FNA1HV 008G-V003/40050ED off-line filter unit, high viscosity version, nominal flow rate 8 l/min / 2.11gpm, with inlet port G1, outlet port $G\frac{3}{4}$, equipped with 3 μ m filter element, 3~phase electric motor and electrical differential pressure clogging indicator.


Remarks:

Combinations listed in this ordering code are standard units. If modifications are required, we kindly ask for your request.


www.argo-hytos.com

Hydraulic symbol

Electric connections

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Page 46 www.argo-hytos.com

Off-line Filter Unit

FNA 040-553

Nominal flow rate up to 40 l/min / 10.6 gpm · Operating pressure up to 8 bar / 116 psi

Off-line Filter Unit FNA 040-553

Description

FNA 040-553

The FNA 040-553 can be used as an additional off-line filter unit or as a self-contained system filter for continuous improvement of the oil cleanliness. The operation of the unit is independent of the working cycles of the machine. Thus, the filter element can be changed without interrupting the working process.

Compact and efficient

The compact design allows installation in restricted spaces. With 40 l/min / 10.6 gpm, the oil is continuously pumped over a fine filter, allowing the highest cleanliness levels to be reached, even with larger tank volumes.

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements.

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info sheet 00.20). Other fluids on request.

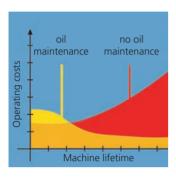
Technical data	
Nominal flow rate	40 l/min / 10.6 gpm
Filter fineness	$\bar{\beta}_{3(c)} = 200*$
Dirt-holding capacity	380 g*
Electric drive	3~400 V, 0.75 KW, n = 1400 min ⁻¹ at 50 Hz, n = 1700 min ⁻¹ at 60 Hz
Weight	approx. 30 kg / 66 lbs
Temperature range of fluids / viscosity range	0 °C +60 °C +32 °F +140 °F
Continuous operation min.	15 mm ² /s / 70 SUS
Continuous operation max.	400 mm ² /s / 1860 SUS
Ambient temperature range	0 °C +50 °C +32 °F +122 °F
Operating pressure	Max. 8 bar / 116 psi
Clogging indicator	Electrical differential pressure indicator

^{*}test dust ISO MTD according to ISO 16889

Order No.

FNA 040-553

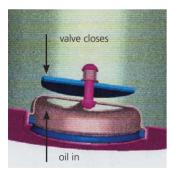
Replacement filter element Order No.


V7.1230-153

Advantages at a Glance

Compact and ready to connect

The FNA 040-553 comes ready to connect, with filter element.


Economical

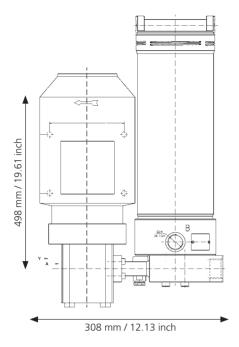
Das FNA 040-553 Off-line Filter Unit offers protection that can extend the lifetime of machinery. This protection gives a direct return on investment through extended service intervals and increased machine availability.

User-friendly filter element change

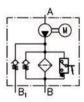
The filter element can be removed from the housing together with the cover. The dirt retention valve ensures that solid particle sediment is completely removed with the filter element.

Maintenance-free filter housing thanks to a unique filter element technique

Fluid flows through the element from the inside to the outside. The built-in dirt retention valve closes automatically when the element is removed, ensuring that all dirt is removed from the housing together with the element.



Quality in detail


The EXAPOR®MAX 2 ultra-fine element is the heart of the FNA 040. High cleanliness levels protect the system from contamination when filling with oil.

The tubing of the pressure control valve to the tank is effected by the user!

Dimensions

Hydraulic symbol

www.argo-hytos.com

Page 50 www.argo-hytos.com

Off-line Filter Unit

FNA 045

Operating pressure up to 7 bar / 101 psi · Nominal flow rate up to 45 l/min / 12 gpm

Off-line Filter Unit FNA 045

Description

Application

In the by-pass flow of hydraulic and lubrication systems.

Performance features

Protection against wear:

The EXAPOR®MAX 2 ultra-fine element meets the highest cleanliness standards, even at full flow.

Protection against failure:

The off-line filter includes a feature that guarantees a closed by-pass valve even at $v \le 200 \text{ mm}^2/\text{s} / 930 \text{ SUS}$ (cold start condition) within specified operating parameters.

Special design features

Housing cover:

Fold-out handle parts at the cover facilitate the opening.

Compact:

The filter housing, the internal gear pump and the electric motor are screwed together to form a unit. No pipes are needed except for the connection lines. The filter units feature low power consumption and minimal operational noise.

Pressure relief valve:

An integrated PRV (pressure relief valve) protects against overload.

Dirt retention valve:

At the bottom of the filter element, flown through from the inside to the outside, there is a dirt retention valve. This closes while pulling the filter element, which is hung up at the cover, out of the housing. Sedimented dirt is removed together with the filter element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- > low pressure drop
- high dirt-holding capacities
- particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated, what guarantees optimum utilization of the filter life.

Materials

Pump and filter housing: Aluminum alloy
Cover: Aluminum alloy
Seals: NBR (FPM on request)
Filter media: EXAPOR®MAX 2 - inorganic,

multi-layer microfiber web

Accessories

Water-absorbing filter elements EXAPOR®AQUA are available on request.

Electrical and / or optical clogging indicators are available on request – with either one or two switching points resp. temperature suppression.

For dimensions and technical data of the clogging indicators, please refer to catalog sheet 60.30.

Characteristics

Nominal flow rate

Up to 45 l/min at $v = 35 \text{ mm}^2/\text{s}$ / up to 12 gpm at v = 162 SUS (see Selection Chart, column 2)

Connection

Threaded port according to ISO 228 or DIN 13. Sizes see Selection Chart, column 9 and 10

Filter fineness

3 μm(c) ... 10 μm(c) β-values according to ISO 16889 (see Selection Chart, column 4 and Diagram Dx)

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Selection Chart, column 4).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F (also see viscosity range)

Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

Viscosity range

Electro motor air cooled type of protection: IP 55	Continuous operation min.	Continuous operation max.	Short-term max.
3 ~ 400 V / 460 V	15 mm²/s /	600 mm ² /s /	800 mm ² /s /
	70 SUS	2790 SUS	3720 SUS
1 ~ 230 V	15 mm²/s /	600 mm ² /s	800 mm ² /s /
	70 SUS	2790 SUS	3720 SUS

Maximum suction height

max. 2 m / 6.56 ft (unfilled)

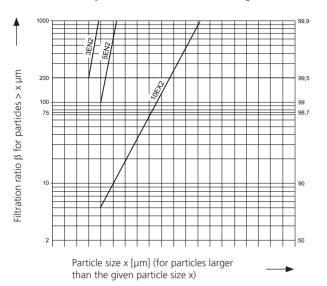
max. 6 m / 19.69 ft (in operating condition)

Operating pressure

Max. 7 bar / 101 psi, pressure protection with pressure relief valve

Operating position

Vertical, pump block at the bottom


Recommended tank capacities

From 500 l up

For off-line filter units for smaller tank capacities see catalog sheet 80.40.

Δ p-curves for complete filters in Selection Chart, column 3

Filtration ratio β as a function of particle size x obtained by the Multi-Pass Test according to ISO 16889

The abbreviations represent the following β -values resp. finenesses:

With EXAPOR®MAX2 elements:

Efficiency

For special applications, finenesses differing from these curves are also available by using special composed filter media.

www.argo-hytos.com

50 VIII.		World Routed	e like like	Oit radi	Linda da	Lind of St.	in teneral tradot	Cherch Chart Chart
	l/min	gpm		g	V	Hz	kW	min ¹
1	2	2	3	4	5	6	7	8
FNA 045-1553	45*	12*	3EN2	1,950	1 ~ 230 V	50(60)*	1.1*	1,500
FNA 045-1153	45*	12*	5EN2	1,980	1 ~ 230 V	50(60)*	1.1*	1,500
FNA 045-4553	45*	12*	3EN2	1,950	3 ~ 400/460 V	50(60)*	1.1*	1,500
FNA 045-4153	45*	12*	5EN2	1,980	3 ~ 400/460 V	50(60)*	1.1*	1,500

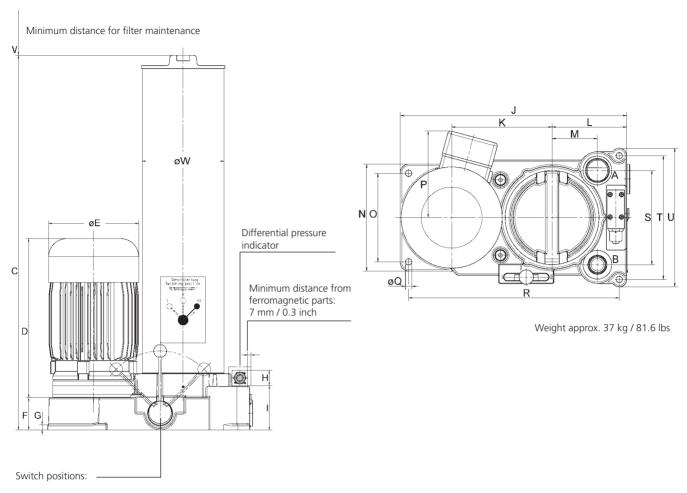
^{*} Indications at 50 Hz. At 60 Hz, the value increases by approx. 20 %.

Sortho.	Gnæit	STA ME	St. O. O. Die	Mat de die de	Stitle	Marille Strings		e defect.
			bar	psi				
1	9	10	1	1	12	13	14	15
FNA 045-1553	G1¼	G1	7	101	1	3	V7.1560-103	optional
FNA 045-1153	G1¼	G1	7	101	1	3	V7.1560-03	optional
FNA 045-4553	G1¼	G1	7	101	1	1, 2	V7.1560-103	optional
FNA 045-4153	G1¼	G1	7	101	1	1, 2	V7.1560-03	optional

Optical or electrical indicators are available to monitor the clogging condition of the element. If the indicator should be already mounted onto the filter head, use the abbreviation "M" behind the part number of the indicator. The printed order acknowledgements show both items separately.

Order example: The filter FNA 045-1553 has to be supplied with optical clogging indicator - response pressure 2.0 bar / 29 psi.

Order example:	FNA 045-1553	/	DG 042-01	I M	
Part No. (Basic unit)					Mounted
Clogging indicator					


For appropriate clogging indicators see catalog sheet 60.30.

Remarks:

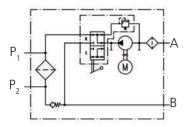
- In case of an increasing operating frequency, the pump delivery volume will increase as well.
- > The filter units listed in this chart are standard units. If modifications are required, e.g. with water-absorbing filter elements, we kindly ask for your request.

Page 54 www.argo-hytos.com

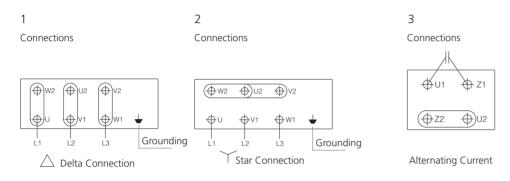
Dimensions

- I = Pumping over
- II = Filtering

Measurements in mm


Туре	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
FNA 045	G11⁄4	G1	735	312	176	63	10	30	87	395	175	130	79	186	154
Туре	Р	Q	R	S	Т	U	V	W							
FNA 045	150	11	367	164	215	241	700	160							

Measurements in inch


Туре	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0
FNA 045	G1¼	G1	28.94	12.28	6.93	2.48	0.39	1.18	3.43	15.55	6.89	5.12	3.11	7.32	6.06
Туре	Р	Q	R	S	Т	U	V	W							
FNA 045	5.91	0.43	14.45	6.46	8.46	9.49	27.56	6.30							

Hydraulic symbol

1

Electric connections

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse / burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Off-line Filter Unit

FNAPC1 045

With oil condition monitoring · Nominal flow rate up to 45 l/min / 12 gpm · Operating pressure up to 7 bar / 101 psi

Off-line Filter Unit FNAPC1 045

OPCom Particle Monitor

LubCos Humidity / Oil Condition Sensor

Description

Application

In the by-pass flow of hydraulic and lubrication systems.

Performance features

Protection against wear:

The EXAPOR®MAX 2 ultra-fine element meets the highest cleanliness standards, even at full flow. A high separation efficiency and excellent dirt holding capacity guarantee maximum protection of the machine and make the FNAPC1 045 an economical choice for our customers.

Filtration with oil condition monitoring:

In addition to efficient filtration, the FNAPC1 045 provides continuous oil condition monitoring. This functionality significantly increases the reliability and productivity of the hydraulic system.

The unit can be equipped with one or two sensors:

The OPCom particle sensor permanently monitors the current oil cleanliness class.

The second sensor can be supplied in two versions.

The humidity sensor LubCos H_2O measures the temperature and the relative humidity of the oil.

In the version with LubCos H_2O+II , the relative humidity, temperature, permittivity and conductivity are issued. This sensor is prepared for continuous determination of the oil condition. Thereby damages can be detected early or avoided completely. This offers the opportunity to prevent machine failures and to extend maintenance and oil change intervals.

Special design features

Housing cover:

Fold-out handles at the cover facilitate the opening.

Compact.

The filter housing, the internal gear pump and the electric motor are screwed together to form one unit. Apart from the connecting lines to the sensor block and the suction/pressure hose, no pipes are needed.

Dirt retention valve:

At the bottom of the filter element, flown through from the inside to the outside, there is a dirt retention valve. This closes while pulling the filter element, which is hung up at the cover, out of the housing. Sedimented dirt is removed together with the filter element. Because of the cover design, the filter element change can be carried out almost without losing any oil.

Switching valve:

The switching valve is used to switch between the basic modes of operation: "filtering" and "pumping without filtering".

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
-) low pressure drop
- > high dirt-holding capacities
- > particularly long maintenance intervals

Materials

Pump: Cast iron, steel

Filter housing: Aluminum alloy, painted RAL 5015

Cover: Aluminum alloy
Seals: NBR (FPM on request)

Filter media: EXAPOR®MAX 2 - inorganic, multi-layer

microfiber web

EXAPOR®AQUA - combination of water absorbing filter layers and inorganic,

multi-layer microfiber web

Remarks

Other colors of the filter housing are available on request.

Accessories

Electrical and / or optical clogging indicators may be ordered together with the off-line filter unit. For choosing the proper clogging indicator see table "Clogging Indicator" in the Ordering Code. A separate ordering of the clogging indicator is possible

For dimensions and technical data of the clogging indicator, please refer to catalog sheets 60.20 and 60.30.

Characteristics

Nominal flow rate

Up to 45 l/min at v = 35 mm²/s / up to 12 gpm at v = 162 SUS

Connection

Threaded port according to ISO 228 (see Dimensions - drawing)

Filter fineness

3 μ m(c) ... 10 μ m(c) with EXAPOR®MAX 2 separating solid particles 7 μ m(c) with EXAPOR®AQUA separating water and solid particles

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Ordering Code, table Filter Element).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F (also see viscosity range)

Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

Viscosity range*

Motor voltage	Continuous operation min.	Continuous operation max.	Short-term operation max.
3 ~ 400 V / 460 V	15 mm²/s /	250 mm ² /s /	800 mm ² /s /
	70 SUS	1160 SUS	3720 SUS
1 ~ 230 V	15 mm²/s /	250 mm²/s	800 mm ² /s /
	70 SUS	1160 SUS	3720 SUS

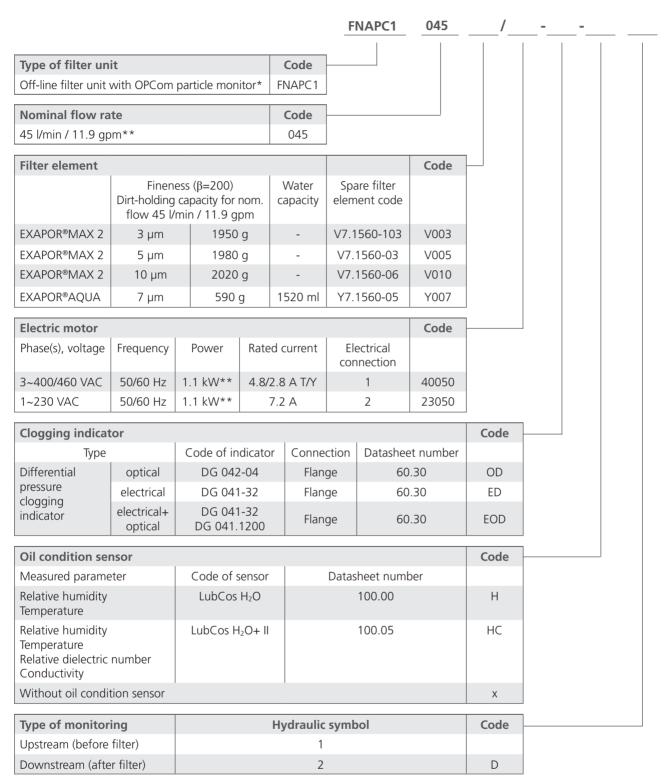
^{*} The maximum continuous viscosity for the filter unit itself is 600 mm²/s / 2790 SUS; an exact measurement of the oil cleanliness class is possible within a viscosity range from 15 mm²/s to 250 mm²/s / 70 SUS to 1160 SUS.

Maximum suction height

2 m / 6.6 ft - first use / unfilled 6 m / 20 ft - operating status

Operating pressure

Max. 7 bar / 101 psi, pressure protection with pressure relief valve


Operating position

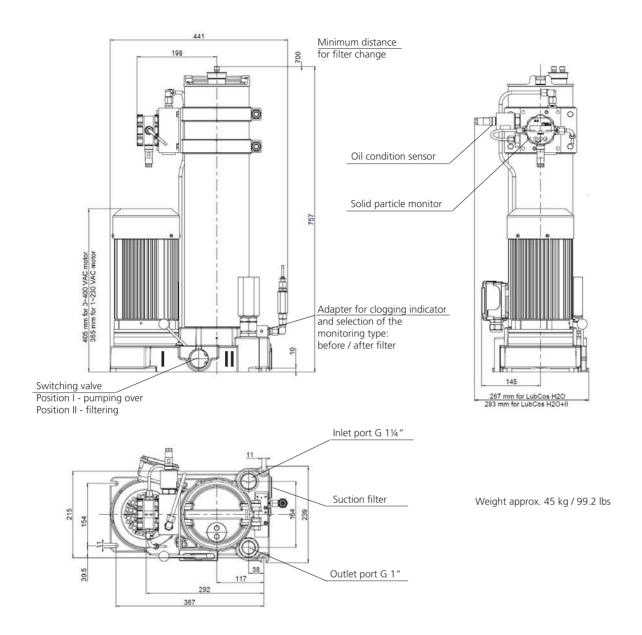
Vertical, pump block at the bottom

Recommended tank capacities

From 500 l up

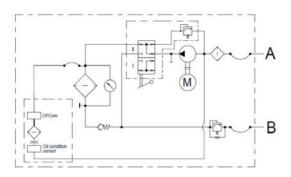
For off-line filter units for smaller tank capacities see catalog sheet 80.40.

^{*} The OPCom particle monitor is factory fitted in each version of the filter unit. The customer only needs to enter the oil condition sensor in the order code.

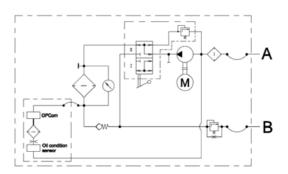

Order example:

FNAPC1 045V003/40050-ED-H off-line filter unit with OPCom particle monitor, 3 µm filter element, 3~phase electric motor, electrical differential pressure clogging indicator, humidity sensor LubCos H₂O. Monitoring type: before filter.

Remarks:


Combinations listed in this ordering code are standard units. If modifications are required, we kindly ask for your request. For preferred types (available in short time), please refer to the table on the last page of this data sheet.

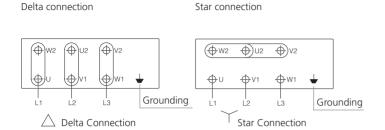
^{**} Indications at 50 Hz. At 60 Hz, the value increases by approx. $20\,\%$.



Hydraulic symbols

1 - Measurement before filter

2 - Measurement after filter


Page 60 www.argo-hytos.com

1

400/460 VAC, 3~phase motor

2

230 VAC, 1~phase motor

Preferred types

Order code	Filter fineness (β=200)	Dirt- holding capacity	Replacement filter element	Motor	Clogging indicator	Oil condition sensor	Hydraulic symbol	SAP number
FNAPC1-045V003/23050-OD-H	3 µm	1950 g	V7.1560-103	1~230 VAC	Optical	LubCos H₂O	1	42707200
FNAPC1-045V003/40050-OD-H	3 µm	1950 g	V7.1560-103	3~400/460 VAC	Optical	LubCos H₂O	1	42707000
FNAPC1-045V003/23050-ED-H	3 µm	1950 g	V7.1560-103	1~230 VAC	Electrical	LubCos H₂O	1	42707100
FNAPC1-045V003/40050-ED-H	3 µm	1950 g	V7.1560-103	3~400/460 VAC	Electrical	LubCos H₂O	1	42707300

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse / burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Page 62 www.argo-hytos.com

Off-line Filter Unit

FNU 008

Operating pressure up to 4 bar / 58 psi · Nominal flow rate up to 8 l/min / 2.1 gpm

Off-line Filter Unit FNU 008

Description

Application

In the by-pass flow of hydraulic and lubrication systems.

Performance features

Protection against wear:

The EXAPOR®MAX 2 ultra-fine element meets the highest cleanliness standards, even at full flow.

Protection against failure:

The off-line filter includes a feature that guarantees a closed by-pass valve even at $v \le 200 \text{ mm}^2/\text{s} / 930 \text{ SUS}$ (cold start condition) within specified operating parameters.

Special design features

Pressure relief valve:

An integrated PRV (pressure relief valve) protects against overload.

Filter elements

Flow direction from the inside to the outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- > low pressure drop
- high dirt-holding capacities
- > particularly long maintenance intervals

Filter maintenance

By using a clogging indicator, the correct moment for maintenance is stated, what guarantees optimum utilization of the filter life.

Materials

Pump housing: Aluminum alloy
Filter housing: Aluminum alloy
Cover: Aluminum alloy
Seals: NBR (Viton on request)

Filter media: EXAPOR®MAX 2 - inorganic, multi-layer

microfiber web

Accessories

Water-absorbing filter elements ${\sf EXAPOR}^{\it @}{\sf AQUA}$ are available on request.

With Part No. FNA 008.1700, a mounting set is available, that facilitates the fitting of incoming and outgoing pipes onto an existing filling / venting connection.

Characteristics

Nominal flow rate

Up to 8 l/min (50 Hz) at v = 35 mm²/s up to 2.1 gpm (50 HZ) at v = 162 SUS (see Selection Chart, column 2)

Connection

Threaded port according to ISO 228 or DIN 13. Sizes see Selection Chart, column 9 and 10

Filter fineness

 $5~\mu m(c)$ β -values according to ISO 16889 (see Selection Chart, column 3 and Diagram Dx) (other filter finenesses on request)

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements (see Selection Chart, column 4).

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F (also see viscosity range)

Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

Viscosity Range

Electro motor air cooled type of protection: IP 55	Continuous operation min.	Continuous operation max.	Short-term max.
3 ~ 400/690 V	15 mm²/s /	1200 mm²/s /	1500 mm²/s /
50 (60) Hz	70 SUS	5560 SUS	6950 SUS

Tank volume

Approx. 2.4 I / 0.6 gal

Maximum suction height

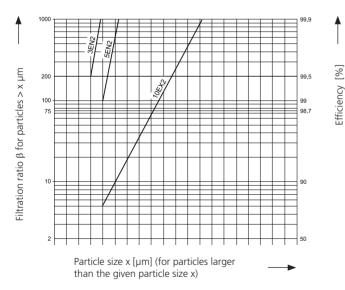
1.0 m / 3.3 ft (unfilled / first use) 6.0 m / 19.7 ft (operation condition)

Operating pressure

Max. 4 bar / 58 psi, pressure protection with pressure relief valve; cracking pressure see Selection Chart, column 11

Operating position

Vertical, motor at the top


Recommended tank capacities

FNU 008: up to 800 I / 211 gal

Diagrams

Filter fineness curves in Selection Chart, column 3

Filtration ratio β as a function of particle size x obtained by the Multi-Pass Test according to ISO 16889

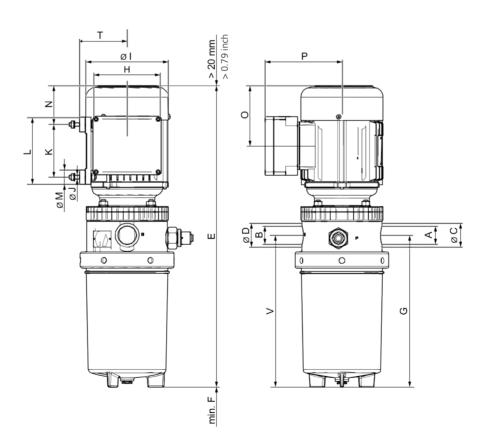
The abbreviations represent the following β -values resp. finenesses:

With EXAPOR®MAX2 elements:

 $3EN2 = \overline{\beta}_{3 (c)} = 200 EXAPOR®MAX 2$ $5EN2 = \overline{\beta}_{5 (c)} = 200 EXAPOR®MAX 2$ $10EX2 = \overline{\beta}_{10 (c)} = 200 EXAPOR®MAX 2$

For special applications, finenesses differing from these curves are also available by using special composed filter media.

 Softing.		Moring		interest of	The state of the s	Ling light	Reiding Report	one lead.	TA STATE OF THE ST	to Character Constitution of C
	l/min	gpm		g	V	Hz	kW	min¹		
1	2	2	3	4	5	6	7	8	9	10
FNU 008-653	8	2.1	5EN2	140	3 ~ 400 / 690 V	50 (60)	0.37 (0.43)*	1350 (1600)*	G1	G1


^{*} Indications at 50 Hz. At 60 Hz the value increases by approx. 20 %

Sarino.	,	crakings	Specific of the specific of th	S Shataille Shataille	Seetic Rederice	Age to the state of the state o	Legino in	, aid Remail's
	bar	psi						
	1	1	12	13	14	15	16	17
FNU 008-653	4	58	1	1, 2	1	V7.1220-13	optical	DG 842-01

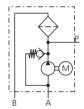
Remarks:

The filter unit listed in this chart is a standard unit. If modifications are required, e.g. with water-absorbing filter elements, pipe extensions, mounting set or 60 Hz motor, we kindly ask for your request.

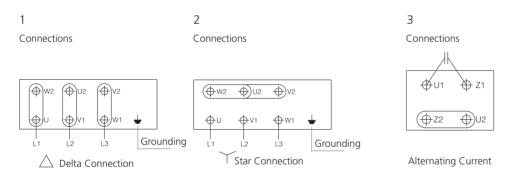
Dimensions

www.argo-hytos.com

Measurements in mm


Туре	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Т	U	V
FNU 008	G1"	G1"	41	41	515	60	261	261	141	M6	90	115	25	66.5	102.5	131	81	261

Measurements in inch


Туре	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N
FNU 008	G1"	G1"	1.61	1.61	28.28	2.36	10.28	10.28	5.55	M6	3.54	4.53	0.98	2.62
Туре	0	т	- 11	V										
Type	U		U	V										
FNU 008	4.04	5.16	3.19	10.28										

Hydraulic symbol

1

Electric connections

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse / burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Oil Service Unit

Compact Filter Pack CFP 03

Ultra-light and compact · Multi-purpose system · Ergonomic design · Simplifies servicing of small power packs

Oil Service Unit CFP

Suction-return Adapter

- > Exclusive solution for small tanks
- > Perfect device for maintenance services
- > Weight only 7.8 kg / 17.3 lbs
- > Filter elements EXAPOR®MAX 2
- > Electric motor with switch
- > Smart suction-return adapter

Description

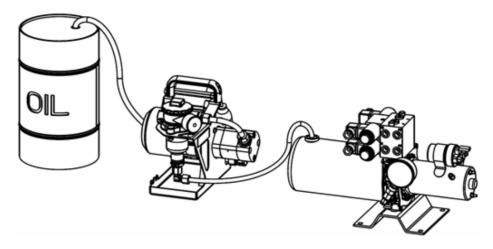
Maintenance of small power packs

The CFP is a multi-purpose off-line filter unit, designed for servicing small power packs on a daily basis, not only to be used during start-up or a breakdown.

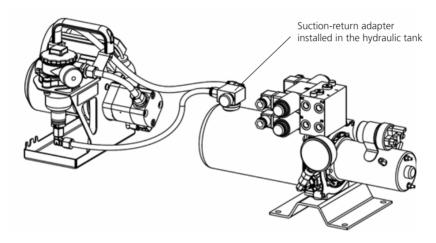
Thanks to its characteristics, the CFP fills the gap in the market as a first unit designed not only for filling but also for cleaning of hydraulic systems.

Ideal service equipment

The compact size and low weight make the device easily transportable from machine to machine without needing any extra transport aids.


The CFP can be used in systems where other devices are not applicable: in machines with difficult access to the oil tank or when working at height.

Dirt-holding capacity


The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements.

Multi-purpose system

The CFP unit can be used for transferring oils, filling of systems with filtered oil or for off-line filtration. Off-line filtration is possible even in systems where only one connection port is available. The special suction-return adapter allows both the suction and the pressure hose to be connected to the tank (for example via the ventilating filter port).

Application example 1: Oil transfer, filling of the small power pack with fresh oil.

Application example 2:

Service of hydraulic systems. Off-line filtration at small power packs with only one available connection port. Suction-return adapter installed in the ventilating filter port.

Characteristics

Hydraulic connection

Hoses:

Suction hose DN12, length 2 m / 6.6 ft Pressure hose DN8, length 2 m / 6.6 ft Free end of hoses closed by protective caps

Electrical connection

Electric motor, air cooled fan with ON/OFF switch
Cable: length 2.5 m / 8.2 ft
Voltages: 1 ~ 230 V AC / 50/60 Hz
1 ~ 110 V AC / 50/60 Hz

Protection class: IP 54

Pump design

External gear pump with suction strainer installed in the suction port

Operating and transport position

Upright

Hydraulic fluids

Mineral oil and biodegradable fluids Motor oils (see info sheet 00.20) Other fluids on request

Temperature range of fluids

0 °C ... +60 °C / +32 °F ... +140 °F

Ambient temperature range

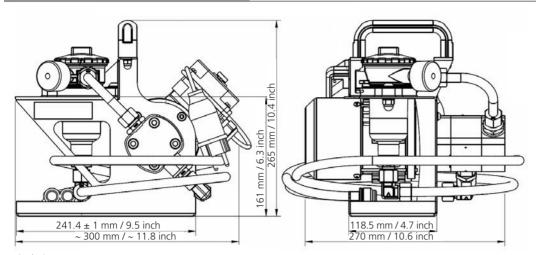
0 °C ... +50 °C / +32 °F ... +122 °F

Viscosity range

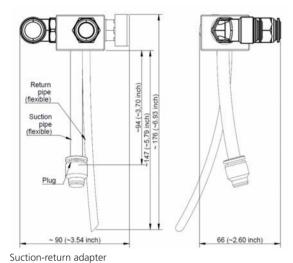
10 - 300 mm²/s - continuous operation without adapter 10 - 170 mm²/s - continuous operation with adapter

	Order No.	Order No.	Order No.	Order No.
	CFP 03-13	CFP 03-16	CFP 03-18	CFP 03-131
Nominal flow rate at v = 35 mm ² /s / 162 SUS	3 l/min* / 0.79 gpm*			
Filter fineness (Bx(c) = 200 according to ISO 16889:1999)	5 μm	10 μm	16 µm	5 μm
Dirt holding capacity	15 g	15 g	11 g	15 g
E-Motor operating voltage	1 ~ 230 V AC	1 ~ 230 V AC	1 ~ 230 V AC	1 ~ 110 V AC
E-Motor operating frequency	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz
E-Motor power	0.06 kW*	0.06 kW*	0.06 kW	0.06 kW*
Electric plug	Type E/F	Type E/F	Type E/F	NEMA 5-15 (type B)
Length of suction hose	2 m / 6.6 ft			
Length of pressure hose	2 m / 6.6 ft			
Suction height max.	2.5 m / 8.2 ft			
Operating pressure max.	3.5 bar / 50.8 psi			
Hydraulic symbol	1	1	1	1
Replacement element Order no.	V3.0510-53	V3.0510-56	V3.0510-58	V3.0510-53
Cracking pressure of by-pass	2.5 bar / 36.3 psi			
Clogging indicator	Manometer	Manometer	Manometer	Manometer
Weight	7.8 kg / 17.3 lbs			

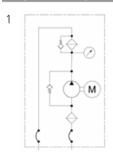
^{*} Indications at 50 Hz. At 60 Hz the value increases by approx. $20\,\%$.


Accessories:

> Suction-return adapter CFP-A-09/05


On request:

- Customized versions
- > Other electric plugs
- Hose extensions
- > Filter elements with other finenesses
- > Adapter with other length of suction and return hose
- > Connecting fitting G½", M22 x 1.5 (or other customized threads) for installation of the suction-return adapter in plastic tanks


www.argo-hytos.com

Basic device

Hydraulic Symbol

Quality Assurance

Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse / burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids
ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high viscosity fluid

Various quality controls during the production process guarantee the leak-free function and solidity of our filters.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

Page 70 www.argo-hytos.com

Oil Service Units

FA1 / FA1HV 008

Easy filling and cleaning · Compact design · Comfortable handling · Wide viscosity range

Oil Service Unit FA1 008

Description

FA1 008 - quick, simple and compact

With the Oil Service Unit FA 008, hydraulic and lubricating systems can be easily filled or cleaned.

The high viscosity version FA1HV is designed to operate with viscosities between 15 and 1500 mm²/s / 70-6950 SUS. This allows, for example, the filtration of transmission fluids and high viscosity oils even at low temperatures.

Protection of components through ultra-fine filtration

The EXAPOR®MAX 2 ultra-fine elements are the heart of the ARGO-HYTOS filtering units FA1 008. High separation efficiencies guarantee excellent cleanliness levels and thereby highest protection of components. The high dirt holding capacity of the EXAPOR®MAX 2 ultra-fine elements allows economic operation of the FA1 008.

Characteristics

Nominal flow rate

Up to 8 l/min / 2.11 gpm

Viscosity range (continuous operation)

FA1: 15 mm²/s / 70 SUS up to 250 mm²/s / 1175 SUS **FA1HV:** 15 mm²/s / 70 SUS up to 1500 mm²/s / 6950 SUS

Operating pressure

FA1: max. 4 bar / 58 psi **FA1HV:** max. 6 bar / 87 psi

Hydraulic fluids

Mineral and biodegradable oils. Other fluids on request.

Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F (also see viscosity range)

Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

Maximum suction height

1.5 m / 4.9 ft

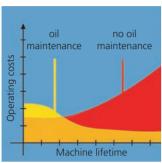
Operating position

Vertical, motor at the bottom

Weight

approx. 18 kg / 39.7 lbs

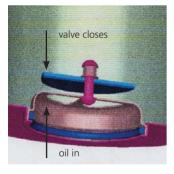
Recommended tank capacities


Up to 800 I / 200 gal

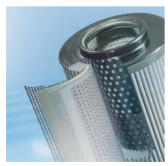
Advantages at a Glance

Compact design

The compact design allows easy access to the oil tank. FA1 008 comes ready to connect, with hose packages.


Economical

The FA1 008 Oil Service Unit offers protection that can extend the lifetime of machinery. This protection gives a direct return on investment through extended service intervals and increased machine availability.


User-friendly filter element change

The filter element can be removed from the housing together with the cover. The dirt retention valve ensures that solid particle sediment is completely removed with the filter element.

Maintenance-free filter housing due to a clever filter element technique

Fluid flows through the element from the inside to the outside. The built-in dirt retention valve closes automatically when the element is removed, ensuring that all dirt is removed from the housing with the element.

Quality in detail

The EXAPOR®MAX 2 fine element is the heart of the FA1 008. High cleanliness levels protect the hydraulic system against contamination during the oil filling process.

Page 72 www.argo-hytos.com

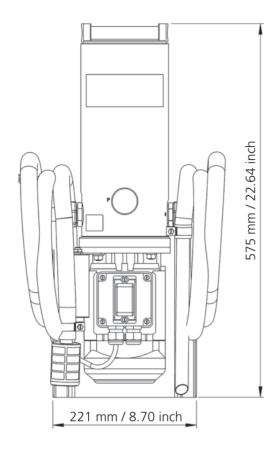
						008	/_	
Type of unit				Code	\perp			
Oil service unit - s	standard vers	ion		FA1				
Oil service unit - I	high viscosity	version		FA1HV				
Nominal flow ra	ate			Code				
8 l/min / 2.11 gpr				008				
Filter element						Code		
	Dirt-holdir	eness (β=200) ng capacity accord o ISO 16889	ding	Water capacity	Spare filter element			
EXAPOR®MAX 2	3 µm	490 g		-	V7.1220-113	V003		
EXAPOR®MAX 2	5 μm	460 g		-	V7.1220-13	V005		
EXAPOR®MAX 2	10 µm	340 g		-	V7.1220-06	V010		
EXAPOR®AQUA	7 μm	64 g		320 ml	Y7.1220-05	Y007		
EXAPOR®AQUA	3 µm	45 g		340 ml	Y7.1220-113	Y003		
Electric motor						Code		
Phase(s), voltage	Frequency	Power FA1	Pow	er FA1HV	Electric plug			
1~230 VAC	50/60 Hz	0.25 kW*	0.	37 kW*	1	23050		
3~400/460 VAC	50/60 Hz	0.25 kW*	0.	37 kW*	2	40050		
Clogging indica	tor						Code	
Туре		Remark	Code of in	e dicator	Datasheet number	Hydraulic symbol		
Optical - manome	eter	Only for FA1	DG	i 200-16	60.20	1	0	
Optical - different		For FA1 or FA1HV	DG	i 042-05	60.30	2	OD	
Pressure hose e	xtension **							
Customized lengt Example of order							Px.x	
Electric cable ex	rtension ***	,						
Customized lenger Example of order	th of the elec	tric cable	5 m /	27.8 ft equ	iipped with elec	tric plug	Cx.x	

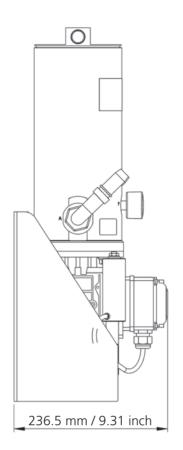
^{*} Indications at 50 Hz. At 60 Hz the value increases by approx. 20 %

FA1 suction hose: DN 19, length 1.8 m / 5.9 ft with suction filter 300 μm, Ø approx. 49 mm / 1.9 inch (installed at the free end of the hose)

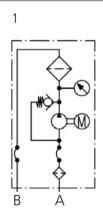
FA1 pressure hose: DN 19, length 2.0 m / 6.6 ft with with aluminum lance length 25 cm (installed at the free end of the hose)
FA1HV suction hose: DN 32, length 1.5 m / 4.9 ft with aluminum lance length 25 cm / 9.8 inch (installed at the free end of the hose)
FA1HV pressure hose: DN 25, length 2.0 m / 6.6 ft with aluminum lance length 25 cm / 9.8 inch (installed at the free end of the hose)

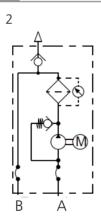
Accessories:

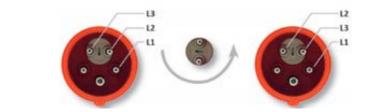

- > Suction strainer set FA 016.1775 for tank openings on request, in case the existing suction strainer cannot be used.
- > Mounting set FA 008.1700 for tank openings with ventilating filter, e.g. as service connection on request.


Order example:

FA1 008V005/23050-OP3.5 - oil service unit, standard version, flow 8 l/min / 2.11 gpm, filter element 5 μ m, motor 1~230 VAC, optical manometer, standard suction hose, customized pressure hose, length 3.5 m / 11.5 ft, standard electric cable.


^{**} As standard, the unit is equipped with the following hoses


^{***} As standard, the unit is equipped with an electric cable, length 2.5 m / 8.2 ft.


Hydraulic symbols

Electric plug*

1: Type E/F (CEE7/7 Unischuko)

2: With phase crossover, 5-pins (3P+N+PE), IEC 60309

* other plugs on request

Oil Service Units

FA 016 · FAPC 016

Oil Service Unit FAPC 016

Integrated OPCom Particle Monitor

Rear view Oil Service Unit FAPC 016

- > Easy filling and cleaning
- > Compact design, comfortable handling
- > High filtration efficiency
- > Option: with oil cleanliness monitor and data storage

Description

FA 016

With the FA 016, hydraulic and lubricating systems can be easily filled or cleaned with off-line filtration.

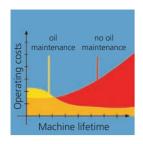
Compact design and comfortable handling

The compact design allows easy access to the oil tank. The FA 016 comes ready to connect with hose packages. The ultra-fine elements can quickly be changed without special auxiliary tools. The suction hose and the pressure hose can be wound around the hose fixtures. Residual oil from the hoses is collected in the oil pan.

Protection of components through ultra-fine filtration

The EXAPOR®MAX 2 ultra-fine elements are the heart of the ARGO-HYTOS Cleanline portable systems. High separation efficiencies guarantee excellent cleanliness levels and thereby highest protection of components. The high dirt holding capacity of the EXAPOR®MAX 2 ultra-fine elements allows economic operation of the Cleanline portable.

FA 016 with OPCom Particle Monitor – FAPC 016


2 in 1: FA 016 with Oil Cleanliness Monitor OPCom
The FA 016 can be equipped with an oil cleanliness monitor.
The ARGO-HYTOS OPCom Particle Monitor permanently monitors the current cleanliness class during the cleaning or filling process.

When monitoring the cleanliness class, a ball valve is used to select "behind filter" (e.g. when filling systems) or "before filter" (e.g. when cleaning filled oil). At the display of the OPCom Particle Monitor, the ordinal numbers of the particle sizes 4, 6, 14 and 21 μ m are shown according to ISO 4406:1999.

The FAPC 016 can store up to 3000 data sets. A PC-software for data recording and representation of the measured values can be downloaded for free at www.argo-hytos.com. The data can be transmitted to a computer via an RS232 interface so that the development can be visualized and followed graphically or in table form.

Easy Transport

For easy transportation of the FA 016 and FAPC 016, an optional trolley can be hooked onto the standing unit. Trouble-free transport over long distances is also possible.

Economical

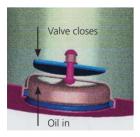
The FA $016 \cdot FAPC$ $016 \cdot Oil$ Service Unit offers protection that can extend the lifetime of machinery. This protection gives a direct return on investment through extended service intervals and increased machine availability.

Portable in any position

Thanks to the compact design, the FA 016 · FAPC 016 can be easily carried and also be used in inaccessible areas of hydraulic systems. Hoses and electric cables can be fixed at the service unit. The Cleanline portable can be operated and transported in both upright and horizontal positions.

User-friendly filter element change

The filter element can be removed from the housing together with the cover. The dirt retention valve ensures that solid particle sediment is completely removed with the filter element.


Quality in detail

The EXAPOR®MAX 2 ultra-fine element is the heart of the FA 016 · FAPC 016. A high separation efficiency and dirt holding capacity guarantee maximum cleanliness levels and service intervals in line with practical needs.

Controlled cleaning with Oil Cleanliness Monitor OPCom

The FA 016 \cdot FAPC 016 can optionally be equipped with the ARGO-HYTOS Oil Cleanliness Monitor OPCom which allows to monitor the oil cleanliness during the cleaning or filling process. The current cleanliness classes are indicated on the display or can be queried via the provided RS232-interface.

Maintenance-free filter housing thanks to a unique filter element technique

Fluid flows through the element from the inside to the outside. The built-in dirt retention valve closes automatically when the element is removed, ensuring that all dirt is removed from the housing together with the element.

Hydraulic connection

Hoses:

Suction hose NG 20, length 1.8 m / 5.9 ft, with suction strainer 300 μ m, Ø approx. 49 mm / 1.9 inch pressure hose NG 20, length 2 m / 6.6 ft, pressure or supply lance Ø approx. 20 mm / 0.8 inch (extensions on request)

Electrical connection / electric motor

Electric motor, air cooled fan type

Cable: length 2.5 m / 8.2 ft Electro motor types: $1\sim 110 \text{ V}/60 \text{ Hz}$ $1\sim 230 \text{ V}/50 \text{ or } 60 \text{ Hz}$

Protection type: IP 55

Tank volume

Approx. 2.4 I / 0.6 gal

Pump design

Internal gear pump

Operating and transport position

Upright or horizontal

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info service sheet 00.20). Other fluids on request.

Temperature range of fluids

0 °C ... +60 °C / +32 °F ... +140 °F

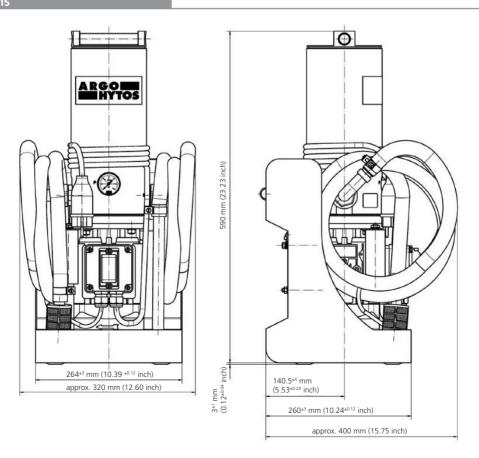
Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

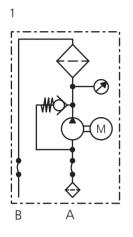
Accessories

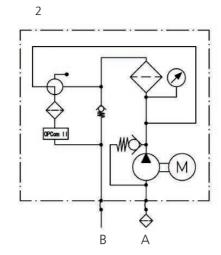
Water-absorbing filter elements EXAPOR®AQUA. These can be used for short-term water absorption in all standard units (on request).

Trollev


Easy transport over long distances.

Viscosity range


Туре	Continuous operation min.	Continuous operation max.	Short-term operation max.
FA 016-11100	15 mm²/s	250 mm ² /s	400 mm²/s
	70 SUS	1160 SUS	1860 SUS
FA 016-11110	15 mm²/s	250 mm ² /s	400 mm ² /s
	70 SUS	1160 SUS	1860 SUS
FA 016-11300	15 mm²/s	250 mm ² /s	400 mm ² /s
	70 SUS	1160 SUS	1860 SUS
FA 016-11600	15 mm²/s	250 mm ² /s	400 mm ² /s
	70 SUS	1160 SUS	1860 SUS
FAPC 016-12105	15 mm²/s	150 mm ² /s	150 mm²/s*
	70 SUS	695 SUS	695 SUS*
FAPC 016-12175	15 mm²/s	150 mm ² /s	150 mm²/s*
	70 SUS	695 SUS	695 SUS*


^{*} An exact measurement of the oil cleanliness class is only possible within a viscosity range from 15 mm²/s / 70 SUS to 150 mm²/s / 695 SUS.

Dimensions

Hydraulic symbols

Description

Cleaning speed

The cleaning speed depends on the efficiency of the filter elements ($\beta_{x(c)}$), the nominal volume flow ($Q_{nominal}$) and the oil volume (V_{actual}).

In graph D1-D2, the cleaning time is shown in relation to the filter fineness (indication of cleanliness classes according to ISO 4406:1999). The values are recorded by laboratory methods and may be influenced by environmental conditions (such as continuous additional introduction of dirt on running systems, high water content, etc.).

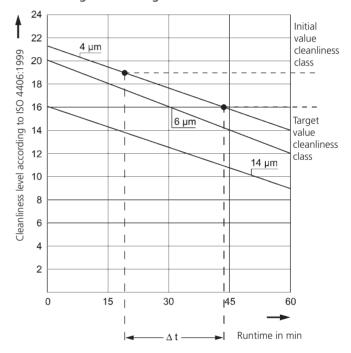
All characteristic curves (see graphs D1-D2) relate to a reference oil volume of 180 l / 47.5 gal and a nominal volume flow of 15 l/min / 4 gpm.

The following formula should be used to convert to the actual oil volume:

$$t_{actual} = \frac{V_{actual} \cdot \Delta t}{12 \cdot Q_{nominal}}$$

 t_{actual} = actual cleaning speed

 Δt = cleaning speed for oil volume of 180 I/

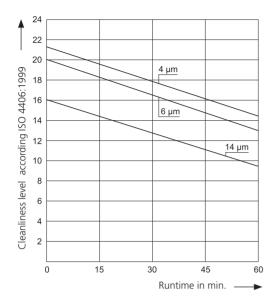

47.5 gal

 V_{actual} = volume of oil to be cleaned

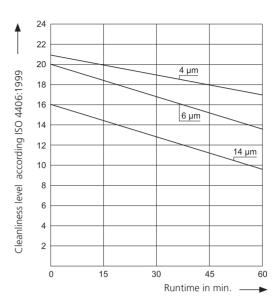
Q_{nominal} = nominal volume flow, see selection chart

For monitoring purposes we recommend the OPCom from ARGO-HYTOS, integrated in the version FAPC 016 or the OPCount Particle Counter.

Determining the cleaning time

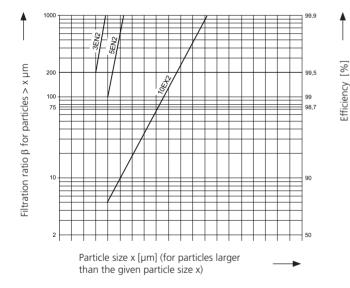


- Determine the initial cleanliness class and enter it on the graph, e. g. 19/17/14 according to ISO 4406:1999
- > Enter the target cleanliness class on the graph, e.g. 16/14/11 according to ISO 4406:1999
- Determine Δt , in this case $\Delta t = 25$ min
- Insert the value in the formula, where $V_{actual} = 350 \text{ I/}$ 92.5 gal and $Q_{nominal} = 16 \text{ l/min} / 4.2 \text{ gpm}$


$$\begin{split} t_{actual} &= \frac{V_{actual} \cdot \Delta t}{12 \cdot Q_{nominal}} \\ &= &\frac{350 \ (92.5) \cdot 25}{12 \cdot 16 \ (4.2)} \approx \textbf{46 min} \end{split}$$

Curves for the cleaning time as a function of the filter fineness

FA 016 with 3EN2 and 5EN2 EXAPOR®MAX 2 filter element



FA 016 with 10EX2 EXAPOR®MAX2 filter element

Filter fineness curves in Selection Chart

Dx Filtration ratio β as a function of particle size x obtained by the Multi-Pass Test according to ISO 16889

The abbreviations represent the following $\beta\text{-values}$ resp. finenesses:

With EXAPOR®MAX 2 elements:

3EN2	=	$\overline{\underline{\beta}}_{3 (c)} = 200$	EXAPOR®MAX 2
5EN2	=	$\overline{\underline{\beta}}_{5 (c)} = 200$	EXAPOR®MAX 2
10EX2	=	$\overline{\beta}_{10 (c)} = 200$	EXAPOR®MAX2

	Order No.					
	FA 016-11100	FA 016-11300	FA 016-11600	FA 016-11110	FAPC 016-12105	FAPC 016-12175
Nominal flow rate	16 l/min* 4.2 gpm*	16 l/min* 4.2 gpm*	16 l/min* 4.2 gpm*	19 l/min 5.0 gpm*	16 l/min* 4.2 gpm*	16 l/min* 4.2 gpm*
Filter fineness see Diagram Dx	3EN2	5EN2	10EX2	3EN2	3EN2	3EN2
Dirt capacity Mi at Q	280 g	270 g	210 g	280 g	280 g	280 g
E-Motor operating voltage	1 ~ 230 V	1 ~ 230 V	1 ~ 230 V	1 ~ 110 V	1 ~ 230 V	1 ~ 110 V
E-Motor operating frequency	50/60 Hz					
E-Motor power	0.45 kW*					
Length suction hose	1.8 m / 5.9 ft					
Length pressure hose	2 m / 6.6 ft					
Viscosity max.	400 mm²/s 1860 SUS	400 mm²/s 1860 SUS	400 mm²/s 1860 SUS	400 mm²/s 1860 SUS	150 mm²/s 695 SUS	150 mm²/s 695 SUS
Suction height max.	1.5 m / 4.9 ft					
Operating pressure PRV max.	4 bar / 58 psi					
Symbol	1	1	1	1	2	2
Replacement element Order No.	V7.1220-113	V7.1220-13	V7.1220-06	V7.1220-113	V7.1220-113	V7.1220-113
Weight	18,9 kg 41.7 lbs	18,9 kg 41.7 lbs	18,9 kg 41.7 lbs	18,9 kg 41.7 lbs	24 kg 52.9 lbs	24 kg 52.9 lbs
Clogging indicator	Manometer	Manometer	Manometer	Manometer	Manometer	Manometer
Particle monitor	-	-	-	-	OPCom	OPCom

 $[\]star$ Indications at 50 Hz. At 60 Hz the value increases by approx. 20 %.

Other versions on request.

Filter elements:

See selection chart.

Water-absorbing filter elements EXAPOR®AQUA - on request. Coarse screen element S7.1220, 100 μ m, cleanable and re-usable - on request.

Accessories:

- > Hose extensions on request.
- > For appropriate clogging indicators, please refer to datasheet 60.20.
- Trolley for FA 016 and FAPC 016 Order No. FA 016-1760.
- > Suction strainer set FA 016.1775 for tank openings on request, in case the existing suction strainer cannot be used.
- > Mounting set FA 008.1700 for tank openings with ventilating filter, e.g. as service connection on request.

Oil Service Units

UM 045 · UMPC 045

Oil service - simple, quick and compact · with integrated particle monitor

UM 045

UMPC 045

OPCom Particle Monitor (integrated in UMPC)

- > Easy filling, cleaning and pumping over
- > Unbeatable ergonomics, comfortable handling
- > High filtration efficiency
- > Optionally with integrated particle monitor
- > With integrated humidity sensor
- > With automatic switch-off function

Description

Oil service units

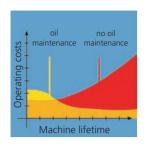
Easy, compact and ergonomic

With the oil service unit UM 045 · UMPC 045, hydraulic or lubrication systems can simply be filled, cleaned or fluid can be transferred without using the filter function. The compact size and ergonomic design allows for easy handling in minimal work spaces.

Protection of components through ultra-fine filtration
The EXAPOR®MAX 2 ultra-fine element is the heart of the
ARGO-HYTOS oil service unit. A high separation efficiency
guarantees excellent cleanliness levels and thereby maximum
protection of components. The high dirt holding capacity of the
EXAPOR®MAX 2 ultra-fine elements makes the oil service units
an economical choice for our customers.

UM 045

The UM 045 comes ready to connect, equipped with hoses. For easy transport, the electrical cables, as well as the suction and return hose, are fixed with support fixtures onto the carrier device. Additional tools can be stowed in the basket of the carrier device.


UMPC 045

The UMPC may be switched off, based on the cleanliness class. Once the desired value has been reached or fallen below for three consecutive times, the device switches off.

In versions -*5735, a particle monitor and a humidity sensor are integrated. Here, the particle classes as well as %rH and temperature are output.

In versions -*5835, a particle monitor and an oil condition sensor are installed. Here, the particle classes %rH, temperature, permittivity and conductivity are issued.

During measurement, data are stored on the SD card and can be transmitted to a computer.

Economical

The UM 045 Oil Service Units offer protection that can extend the lifetime of machinery. This protection gives a direct return on investment through extended service intervals and increased machine availability.

User-friendly filter element change

The filter element can be removed from the housing together with the cover. The dirt retention valve ensures that solid particle sediment is completely removed with the filter element.

Switching functions

The selector valve is used to switch between the basic modes of operation: "filtering" and "pumping over without filtering".

Keeping hoses in place

The retainers attached to the sides of the frame secure the hoses in any transport position.

Compact design

Among the numerous advanced features, listed in the specification of the UM units, compact design was a basic requirement to be met by our team of design engineers. Transporting the UM in horizontal position, e.g. in the cargo area of a service vehicle, is facilitated by the wheels and the curved design of the frame.

Unbeatable ergonomics

Superior technology and excellent design are of no use if the operator can only move the service equipment with great physical effort. Therefore, ergonomics were of primary importance when designing the UM units.

Owing to its optimized weight distribution, the UM can be tilted from the standing position with minimum effort. In the tilted position, the UM can be moved walking upright, removing strain from the back

Cleaning speed

The cleaning speed depends on the efficiency of the filter elements ($\beta_{x(c)}$), the nominal volume flow ($Q_{nominal}$) and the oil volume (V_{actual}).

In graph D1-D2, the cleaning time is shown in relation to the filter fineness (indication of cleanliness classes according to ISO 4406:1999). The values are recorded by laboratory methods and may be influenced by environmental conditions (e.g. compared to the laboratory test dust ISO MTD considerably deviating particle constellations, continuous additional introduction of dirt on running systems, high water content, etc.).

All characteristic curves (see graphs D1-D2) relate to a **reference** oil volume of 180 l / 47.5 gal and a nominal volume flow of 15 l/min / 4 gpm.

The following formula should be used to convert to the actual oil volume:

$$t_{actual} = \frac{V_{actual} \cdot \Delta t}{12 \cdot Q_{nominal}}$$

t_{actual} = actual cleaning speed

 Δt = cleaning speed for oil volume of 180 l /

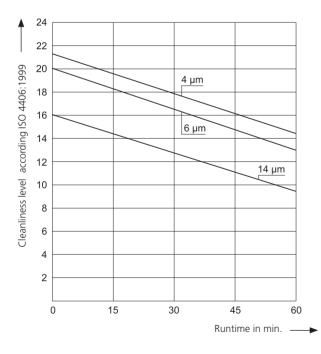

47.5 gal

 V_{actual} = volume of oil to be cleaned

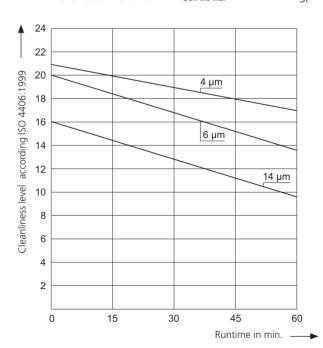
Q_{nominal} = nominal volume flow, see Selection Chart

For monitoring purposes, we recommend the OPCom from ARGO-HYTOS, integrated in the version FAPC 016 or the OPCount Particle Counter.

Determining the cleaning time

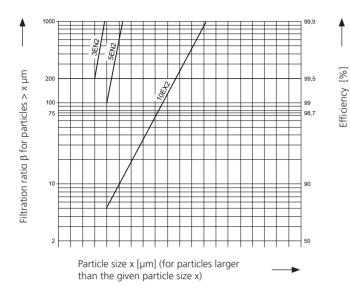


- Determine the initial cleanliness class and enter it on the graph, e. g. 19/17/14 according to ISO 4406:1999
- ➤ Enter the target cleanliness class on the graph, e.g. 16/14/11 according to ISO 4406:1999
- Determine Δt , in this case $\Delta t = 25$ min
- Insert the value in the formula, where V_{actual} = 350 I / 92.5 gal and Q_{nominal} = 16 l/min / 4.2 gpm


$$t_{actual} = \frac{V_{actual} \cdot \Delta t}{12 \cdot Q_{nominal}} = \frac{350 (92.5) \cdot 25}{12 \cdot 16 (4.2)} \approx 46 \text{ min}$$

Curves for the cleaning time as a function of the filter fineness

3EN2 and 5EN2 EXAPOR®MAX 2 filter element Reference oil volume with Q_{Off-line filter} =15 l/min / 4 gpm.



10EX2 EXAPOR®MAX 2 filter element
Reference oil volume with Qoff-line filter =15 l/min / 4 gpm.

Filter fineness curves in the selection chart

Filtration ratio β as a function of particle size x obtained by the Multi-Pass-Test according to ISO 16889

The abbreviations represent the following β -values resp. finenesses:

For EXAPOR®MAX2 elements:

 $\begin{array}{rclcrcl} 3\text{EN2} & = & \overline{\beta}_{3 \text{ (c)}} & = 200 & \text{EXAPOR} \text{®MAX 2} \\ 5\text{EN2} & = & \overline{\beta}_{5 \text{ (c)}} & = 200 & \text{EXAPOR} \text{®MAX 2} \\ 10\text{EX2} & = & \overline{\beta}_{10 \text{ (c)}} & = 200 & \text{EXAPOR} \text{®MAX 2} \\ \end{array}$

Characteristics

Hydraulic connection

Hoses:

Suction hose NG 32, length 2.7 m / 8.9 ft, with suction strainer 280 μ m, pressure hose NG 25, length 2.7 m / 8.9 ft.

Electrical connection / electric motor

Electric motor, air cooled fan type

Cable: length 6 m / 19.7 ft Electro motor types: $1 \sim 230 \text{ V}/50 \text{ Hz}$ $3 \sim 400 \text{ V}/50 \text{ Hz}$ $(3 \sim 460 \text{ V}/60 \text{ Hz})$

Protection type: IP 54

(see Selection Chart)

Tank volume

Approx. 13 I / 3.4 gal

Pump design

Internal gear pump

Operating and transport position

Operating position: upright

Transport position: upright or horizontal

Hydraulic fluids

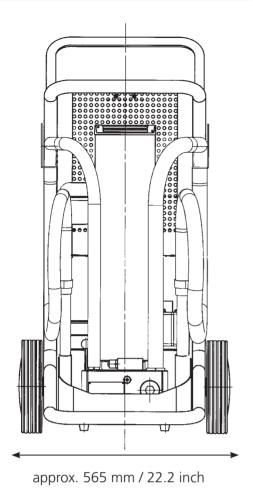
Mineral oil and biodegradable fluids (HEES and HETG, see info service sheet 00.20). Other fluids on request.

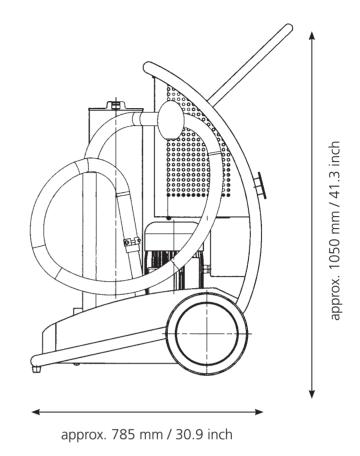
Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F (also see table Viscosity Range)

Ambient temperature range

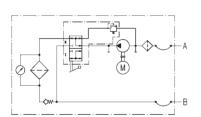
0 °C ... +50 °C / +32 °F ... +122 °F

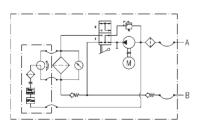

Accessories


Water-absorbing filter elements EXAPOR®AQUA. These can be used for short-term water absorption in all standard units (on request).

Viscosity range

Туре	Continuous operation min.	Continuous operation max.	Short-term operation max.
UM 045	15 mm²/s / 70 SUS	600 mm ² /s / 2790 SUS	800 mm ² /s / 3720 SUS
UMPC 045	15 mm ² /s / 70 SUS	250 mm ² /s* / 1160 SUS* 600 mm ² /s* / 2790 SUS*	800 mm ² /s / 3720 SUS


^{*} An exact measurement of the oil cleanliness class is only possible within a viscosity range from 15 mm²/s to 250 mm²/s / 70 SUS to 1160 SUS.


Hydraulic symbol - UM 045

1

Hydraulic symbol - UMPC 045

2

Order INO.		ling line	ing of the second	A China Chin	LI, K.	de de la	LE L	The state of the s	ر ر ن ن		The state of the s	Co.	E CO. WEEL OF THE PARTY OF THE
Basic model – U	JM 045												
UM 045-1553	45 l/min** 11.9 gpm**	3EN2	1950 g	1~230 V	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS	2.0 m 6.6 ft	1	V7.1560-103	optical	76.5 kg 169 lbs
UM 045-4553	45 l/min** 11.9 gpm**	3EN2	1950 g	3~400 V 50 Hz 3~460 V 60 Hz	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS		1	V7.1560-103	optical	76.5 kg 169 lbs
UM 045-1153	45 l/min** 11.9 gpm**	5EN2	1980 g	1~230 V	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS		1	V7.1560-03	optical	76.5 kg 169 lbs
UM 045-4153	45 l/min** 11.9 gpm**	5EN2	1980 g	3~400V 50Hz 3~460V 60Hz	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS		1	V7.1560-03	optical	76.5 kg 169 lbs

UM with integr	JM with integrated Particle Monitor OPCom – UMPC 045												
UMPC 045-15735 ***	45 l/min** 11.9 gpm**	3EN2	1950 g	1~230 V	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS		2	V7.1560-103	electr.	97 kg 214 lbs
UMPC 045-15835	45 l/min** 11.9 gpm**	3EN2	1950 g	1~230 V	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS		2	V7.1560-103	electr.	97 kg 214 lbs
UMPC 045-45735	45 l/min** 11.9 gpm**	3EN2	1950 g	3~400 V 50 Hz 3~460 V 60 Hz	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS		2	V7.1560-103	electr.	97 kg 214 lbs
	45 l/min** 11.9 gpm**	3EN2	1950 g	3~400 V 50 Hz 3~460 V 60 Hz	50/60 Hz	1.1 kW**	2.7 m / 8.9 ft	15 600 mm²/s 70 2790 SUS		2	V7.1560-103	electr.	97 kg 214 lbs

Please request our data sheet no. 100.10 for more detailed information on the OPCom Particle Monitor.

- * The exact determination of the cleanliness class is possible in a viscosity range from 15 mm²/s to 250 mm²/s / 70 SUS to 1160 SUS.
- ** Indications at 50 Hz. At 60 Hz the value increases by 20%.
- *** H_2O + OPCom Particle Monitor, function see description
- **** H₂O+ II + OPCom Particle Monitor, function see description

Other versions on request.

Filter elements:

see Selection Chart.

Water-absorbing filter elements EXAPOR®AQUA on request.

Accessories:

Hose extensions on request.

For appropriate clogging indicators, please refer to datasheet 60.20.

Page 86 www.argo-hytos.com

Oil Service Units

UMPCL 045 Lightline

With integrated particle monitor · Optionally with adjustable flow range 20 - 70 l/min / 5.3 - 18.5 gpm

UMPC 045 Lightline

Switching valve 1

Switching valve 2

Front panel of the UMPC 045 Lightline with adjustable flow range

Description

The UMPCL 045 Lightline is an oil service unit designed for filling and cleaning of hydraulic or lubrication systems and for transferring of fluids.

Its compact size and ergonomic design allow easy handling in minimal work spaces.

Protection of systems through ultra-fine filtration

The EXAPOR®MAX 2 ultra-fine filter element is the heart of the UMPCL 045. A high separation efficiency and a large dirt-holding capacity of the filter elements (up to 1980 g) make the UMPCL 045 an economical choice for our customers.

Monitored filtration

The unit is equipped with an oil cleanliness monitor. The OPCom particle sensor permanently monitors the current cleanliness class during the cleaning or filling process. The data stored in the internal memory can be transmitted to a computer.

Flexible and universal device

Optionally, the unit can be equipped with frequency converter and potentiometer for adjusting the flow rate in the range of 20 - 70 l/min / 5.3 -18.5 gpm. This additional feature makes the UMPCL 045 even more universal and extends its use to smaller and larger systems. The flow rate can be adapted to the actual need depending on the tank size and / or required speed of the filtration / oil transfer.

Switching valve 1 for changing operating modes

Installed in the pump block - to switch between two modes: "filtering" and "pumping without filtering".

Switching valve 2 for selecting the sampling point

Installed in the front panel - for cleanliness measurement: "behind filter" (e.g. when filling systems) or "before filter" (e.g. for tank cleaning).

Characteristics

Nominal flow rate

up to 70 l/min / 18.5 gpm - see Ordering Code

Operating pressure

max. 7 bar / 101 psi

Viscosity range*

15 - 1100 mm²/s - continuous operation, flow 20 l/min / 5.3 gpm 15 - 600 mm²/s - continuous operation, flow 45 l/min / 11.9 gpm

15 - 400 mm²/s - continuous operation, flow 70 l/min / 18.5 gpm

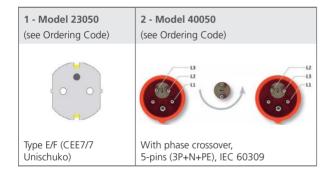
Temperature range of fluids

0 °C ... +65 °C / +32 °F ... +149 °F (also see table Viscosity Range)

Ambient temperature range

0 °C ... +50 °C / +32 °F ... +122 °F

Pump design


Internal gear pump

Electrical motor

3 ~ 400/460 V / 50/60 Hz, 1.1kW Protection type: IP 54

Electrical connection**

Cable length 6 m / 19.7 ft with the following electric plug:

Clogging indicator

optical clogging indication DG 042-04 (all types) $\Delta p = 3.5 \pm 0.5$ bar

Hydraulic connection

Suction side:

Hose DN 32, length 2.7 m / 8.9 ft with suction pipe

Suction strainer:

Screen element 280 µm, ordering code \$9.0417-13

Pressure side***:

Hose DN 25, length 2.7 m / 8.9 ft with pressure pipe

Permitted suction heights

max. 2 m (unfilled)

max. 6 m (in operating condition)

Hydraulic fluids

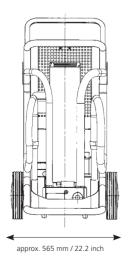
Mineral oil and biodegradable fluids (HEES and HETG, see info service sheet 00.20). Other fluids on request.

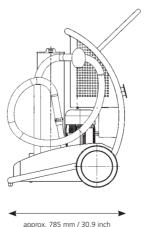
Weight

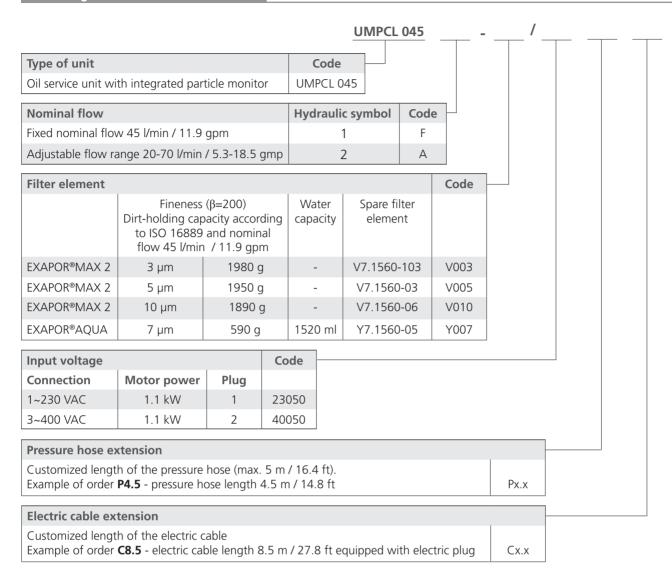
approx. 85 kg / 187.4 lbs

Operating and transport position

Operating position: upright

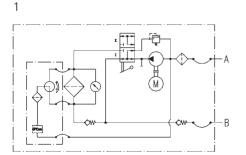

Transport position: upright or horizontal

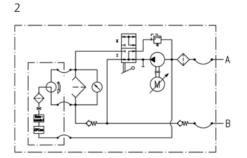

Accessories


Quick connection adapters for suction and pressure hose available on request

- An exact measurement of the oil cleanliness class is only possible within a viscosity range from 15 mm²/s to 300 mm²/s / 70 SUS to 1160 SUS
- ** For electric cable extension see Ordering Code. Model 12050 is delivered without electric plug or the plug version should be defined individually
- *** For pressure hose extension see Ordering Code

Dimensions





Order example:

UMPCL 045A-V003/23050C9.5 - oil service unit with integrated particle monitor, version with adjustable flow range 20 - 70 l/min / 5.3 - 18.5 gmp, filter element 3 μ m, input voltage $1\sim230$ VAC, standard suction and pressure hose, and customized length of electric cable 9.5 m / 31 ft

Hydraulic symbol

Page 90 www.argo-hytos.com

Oil Service Unit for Gear Applications

FA 003-2341

Easy filling and cleaning · Nominal flow rate up to 3 l/min / 0.8 gpm · Viscosity up to 5.000 mm²/s / 23,000 SUS

Oil Service Unit FA 003-2341

Description

FA 003-2341

The FA 003-2341 Oil Service Unit allows easy filling and cleaning of hydraulic and lubricating systems.

Suitable for up to 5000 mm²/s / 23,000 SUS

The unit is designed to operate with viscosities between 15 and 5,000 mm²/s / 70 and 23,000 SUS. This allows, for example, transmission fluids to be cleaned or filtered while filling, even at low temperatures.

Hydraulic connection

Suction hose DN 32 mm x 1.5 m / 4.9 ft length CEL28 (connection M36 x 2, external thread with sealing cone 24°) Pressure hose DN 25 mm x 1.5 m / 4.9 ft length CEL28 (connection M36 x 2, external thread with sealing cone 24°) Suction and pressure hoses can be removed or mounted on quickly with special ARGO-HYTOS fast locking couplings.

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info sheet 00.20). Other fluids on request.

Technical data	
Nominal flow rate	3 l/min / 0.8 gpm
Filter fineness	$\beta_{5(c)} = 200*$
Dirt-holding capacity	460 g*
Electric drive	3 ~ 400 V, 50 Hz; 0.25 kW
Weight	approx. 22 kg / 48.5 lbs
Temperature range of fluids / viscosity range	0 °C +60 °C +32 °F +140 °F
Continuous operation min.	15 mm ² /s / 70 SUS
Continuous operation max.	5,000 mm ² /s / 23,000 SUS
Ambient temperature range	0 °C +50 °C +32 °F +122 °F
Operating pressure	Maximum 6 bar / 87 psi
Clogging indicator	optical

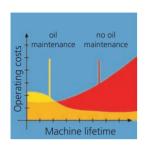
^{*}according to ISO 16889 at 8 l/min and Δp 3 bar / 2.1 gpm and Δp 43.5 psi

Order No.

FA 003-2341

Replacement filter element Order No.

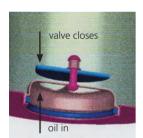
V7.1220-13


www.argo-hytos.com

Advantages at a Glance

Compact and ready to connect

The FA 003-2341 comes ready to connect, with hose packages and filter element.


Economical

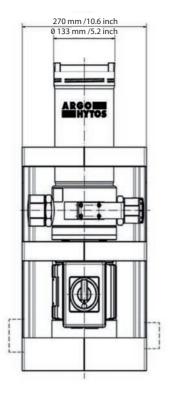
The FA 003-2341 oil service unit offers protection that can extend the lifetime of machinery. This protection gives a direct return on investment through extended service intervals and increased machine availability.

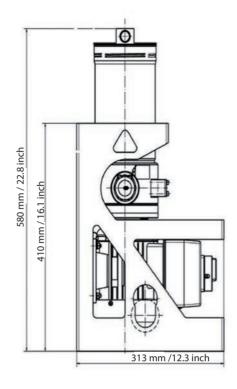
User-friendly filter element change

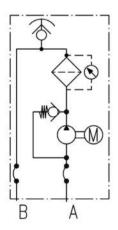
The filter element can be removed from the housing together with the cover. The dirt retention valve ensures that solid particle sediment is completely removed with the filter element.

Maintenance-free filter housing thanks to a unique filter element technique

Fluid flows through the element from the inside to the outside. The built-in dirt retention valve closes automatically when the element is removed, ensuring that all dirt is removed from the housing together with the element.


Quality in detail


The EXAPOR®MAX 2 ultra-fine element is the heart of the FA 003. High cleanliness levels protect the system from contamination when filling with oil.


For high oil viscosity

Specifically designed for high viscosity fluids, the FA 003 is highly suited for cleaning and filling oil in gear applications, even at low temperatures- for example: transmission fluid in azimuth gears of wind turbines.

Hydraulic symbol

www.argo-hytos.com

Page 94 www.argo-hytos.com

Oil Service Unit

FA 016-1160

Easy filling and cleaning · Nominal flow rate up to 16 l/min / 4.2 gpm · Operating pressure up to 30 bar / 435 psi

Oil Service Unit FA 016-1160

Description

FA 016-1160

With the oil service unit FA 016-1160, hydraulic or lubricating systems can be easily filled or cleaned.

Suitable for up to 30 bar / 435 psi

The unit is designed to operate up to 30 bar / 435 psi filling or system pressure. This allows e.g. filling and filtering of transmission fluids over valve blocks.

Dirt-holding capacity

The dirt-holding capacity values in grams from the ISO MTD test dust are in accordance with the ISO 16889 requirements.

Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info sheet 00.20). Other fluids on request.

Technical data	
Nominal flow rate	16 l/min** / 4.2 gpm**
Filter fineness	$\overline{\beta}_{3(c)} = 200*$
Dirt-holding capacity	280 g*
Electric drive	1 ~ 230 V / 50 Hz; 1.5 kW, n = 3,000 min ⁻¹
Weight	approx. 30 kg / 66 lbs
Temperature range of fluids / viscosity range	0 °C +60 °C +32 °F +140 °F
Continuous operation min.	15 mm ² /s / 70 SUS
Continuous operation max.	400 mm ² /s / 1,860 SUS
Ambient temperature range	0 °C +50 °C +32 °F +122 °F
Operating pressure	Max. 30 bar / 435 psi
Clogging indicator	Optical differential pressure indicator

^{*} with test dust ISO MTD according to ISO 16889

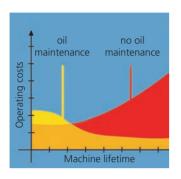
Order No.

FA 016-1160

Replacement filter element Order No.

V7.1220-163

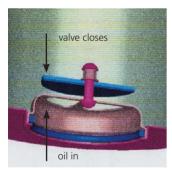
www.argo-hytos.com


^{**} Indications at 50 Hz. At 60 Hz, the value increases by approx. 20%.

Advantages at a Glance

Compact and ready to connect

The FA 016-1160 comes ready to connect, with hose packages and filter element.

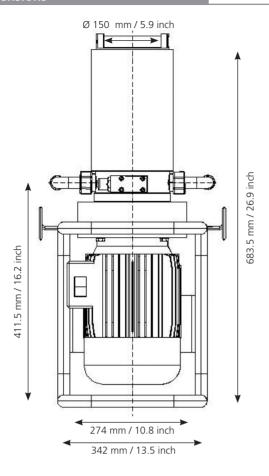

Economical

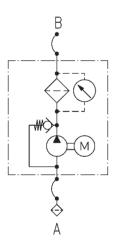
Das FA 016-1160 oil service unit offers protection that can extend the lifetime of machinery. This protection gives a direct return on investment through extended service intervals and increased machine availability.

User-friendly filter element change

The filter element can be removed from the housing together with the cover. The dirt retention valve ensures that solid particle sediment is completely removed with the filter element.

Maintenance-free filter housing thanks to a unique filter element technique


Fluid flows through the element from the inside to the outside. The built-in dirt retention valve closes automatically when the element is removed, ensuring that all dirt is removed from the housing together with the element.


Quality in detail

The EXAPOR®MAX 2 ultra-fine element is the heart of the FA 016-1160. High cleanliness levels protect the system from contamination when filling with oil.

Page 96 www.argo-hytos.com

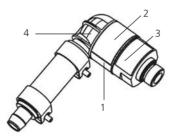
Hydraulic symbol

Page 98 www.argo-hytos.com

Accessories

Suction Strainer Set FA 016.1775

FA 014 · FA 016 · FAPC 016 · FNA 008 · FNA 016



FA 016 with screwed-in suction strainer set FA 016.1775

Suction strainer set FA 016.1775

Description

The suction strainer set FA 016.1775 guarantees pump protection, when the existing suction strainer at the suction pipe of the oil service units FA 014, FA 016 and FAPC 016 cannot be used. This is the case, when the oil service units have to be mounted to the hydraulic unit by quick fitting coupling or ball valve, or the opening of the tank is not sufficiently dimensioned. The suction strainer set FA 016.1775 also serves as an alternative for the off-line filter units FNA 008 or FNA 016, if they are mounted to hydraulic units afterwards and installation of a suction strainer within the tank is impossible.

The suction strainer set FA 016.1775 consists of a suction strainer element 200 μ m (1), a clip (2), a connection part with O-ring (3) and a connection piece (4).

Installation of the suction strainer set

- The suction pipe with suction strainer, mounted to the ARGO-HYTOS oil service unit, has to be removed.
- The suction strainer set FA 016.1775 is directly screwed into the filter housing.
- A suction pipe with DN 25 is connected (can be locked by hose clip).

The suction strainer set FA 016.1775 is designed in a way, so that the DN 25 hose connection can be rotated by 360° and thus be adapted to the position of the pipe inlet.

Caution:

With application of the FA 016.1775 strainer set in the version of FA 016-1160, an additional male end fitting has to be used!

Maintenance

The suction strainer (1) should be checked once a month with oil service units and every 12 months with off-line filter units.

- Remove the clip (2) and pull the connection piece (4) from the housing (3).
- > Remove the suction strainer element from the connection piece and clean it with cleaning solvent.
- Replace the suction strainer element (1), if damaged, by a new one S3.0405-02.
- Mount cleaned or new suction strainer element (1) S3.0405-02 onto the housing and secure it with the plastic clip (2).

Order-No.:

Suction strainer set complete: FA 016.1775

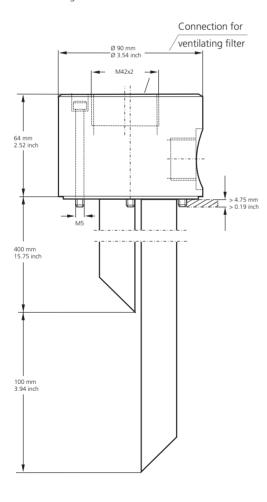
Suction strainer element

filter fineness 200 µm (1): S3.0405-02

Page 100 www.argo-hytos.com

Accessories

Mounting Set FNA 008.1700


FNA 008 · FNA 016 · (FA 014 · FA 016 · FAPC 016)

Mounting set attached to the tank

Description

Operating mode and mounting

The mounting set FNA 008.1700 allows easy connection of the supply and discharge pipe to the tank of the ARGO-HYTOS off-line filter units, provided that there is a connection for a ventilating filter at the tank according to the displayed connection scheme (e. g. for ARGO-HYTOS filling and ventilating filter LE.0716 and LE.0817... 0827).

The mounting set can also be used as service connection for ARGO-HYTOS oil service units, e. g. if hydraulic systems require regular oil cleaning. For this purpose, the mounting set is additionally equipped with adequate hose nipples so that the ARGO-HYTOS oil service units can be easily and quickly connected (in this case we recommend to use the suction strainer set FA 016.1775 for pump protection).

Installation of the mounting set

- ➤ Instead of the filling filter, the mounting set FNA 008.1700 is attached to the tank.
- > The off-line filter unit is tubed or piped to the mounting set.
- > The ventilating filter is directly screwed onto the mounting set.

Order No:

Dewatering Units

OPS 010 · OPS 550

Dewatering Unit OPS 010

Dewatering Unit OPS 550

Why OPS?

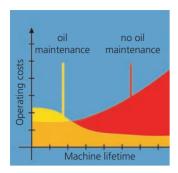
Due to increased demands placed on hydraulic and lubrication systems with respect to lifetime and availability, the importance of the fluid being used, is constantly growing.

Even the smallest amount of free water in oil can cause acidification and thus lead to corrosion of component surfaces.

An increased water content can dramatically alter the characteristics of the oil. The consequences include: reduced load capacity, lower temperature resistance and, ultimately, rapid oil oxidation (aging), which all results in equipment damage and costly repairs.

Some of the causes of water in hydraulic and lubricating oil are: Ambient moisture, splash water and cooler breakage. With the new OPS mobile dewatering unit, large quantities of free water can be removed efficiently. The oil is heated, if necessary, and channeled into a vacuum chamber. The water is removed, long before the saturation limit is reached, thanks to the reduced steam pressure. A fine filter is installed downstream from the drying process to ensure that the oil is dry and filtered when it flows back into the machine or tank.

The water content is constantly monitored with the ARGO-HYTOS LubCos H_2O water sensor. Thus, the user is always up-to-date.


Thanks to the available combinations of the device, the OPS is always perfectly equipped.

Functionality

The unit separates free and dissolved water from hydraulic and lubricating oils. By means of a vacuum pump, low pressure is produced within the reactor and oil is sucked in via the oil inlet. A heater warms up the oil to the adjusted temperature.

Inside the reactor, the water evaporates far below the saturation limit. The steam is cooled down and condensed. The condensed water conglomerates in a collection tray. The dried oil conglomerates within the reactor. Herein, level switches are found for switching on and off the outlet pump. As soon as the filling level has been reached, the outlet pump will operate and deliver the dewatered oil to the oil outlet.

On site, the cooled oil sample can be inspected visually. As long as the cooled oil is clouded, the water content is inadmissible high. If the cooled oil sample appears to be clear, the water content lies within the permitted range. An exact examination of the water content is carried out by an oil sample analysis in the laboratory (e.g. determination of the water using the Karl-Fischer-Method according to DIN 51777).

Economical

The OPS 10 \cdot OPS 550 Dewatering Units offer protection that can extend the lifetime of machinery. This protection gives a direct return on investment through extended service intervals and increased machine availability.

Easy handling

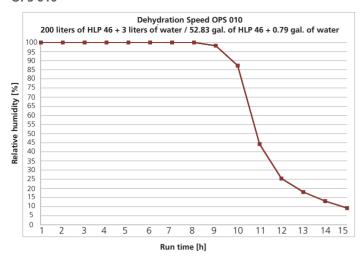
The operating panel is clearly and easily arranged. All operating elements and indications can be realized at a glance.

User-friendly filter element change

The filter element can be removed from the housing together with the cover. The dirt retention valve ensures that solid particle sediment is completely removed with the filter element.

Efficient dewatering

The vacuum chamber and tempering of the oil allow dewatering far below the saturation limit.

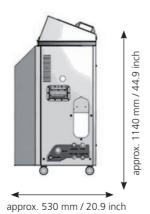

Monitored dewatering

With the humidity sensor LubCos H_2O , the relative humidity is monitored during the dewatering process.

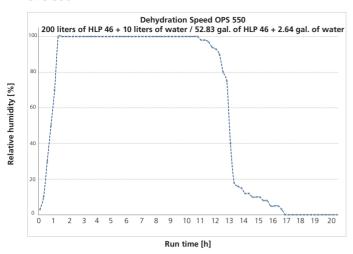
Page 104 www.argo-hytos.com

Diagrams

OPS 010

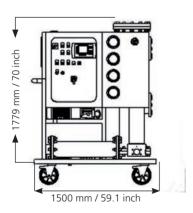

Technical data

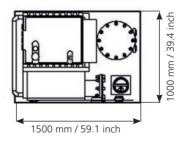
	OPS 010
Nominal flow rate	10 l/min / 2.6 gpm
Filter fineness	5 μm
Operating voltage	3 ~ 400 V
Operating frequency	50 / 60 HZ
Nominal current	16 A
Power	max. 7.4 kW
Viscosity min.	10 mm ² /s / 46 SUS
Viscosity max.	700 mm ² /s / 3244 SUS
Dewatering rate	0.9 l/h* / 0.2 gal/h*
Connection A	¾" BSP
Connection B	1" BSP
Replacement filter element	V7.1230-53
Dirt-holding capacity	220 g
Weight	160 kg / 353 lbs (without accessories)
Dimensions (length x width x height)	600 x 565 x 1200 mm / 23.6 x 22.2 x 47.2 inch


* typical dewatering rate with 200 liters / 52.83 gallons of oil at > 10,000 ppm water content

Dimensions

OPS 550




Technical data

	OPS 550
Nominal flow rate	50 l/min / 13.2 gpm
Filter fineness	5 μm
Operating voltage	3 ~ 400 V
Operating frequency	50 / 60 HZ
Nominal current	32 A
Power	max. 13 kW
Viscosity min.	15 mm ² /s / 69 SUS
Viscosity max.	500 mm ² /s / 2317 SUS
Dewatering rate	1.65 l/h* / 0.4 gal/h*
Connection A	1¼" BSP
Connection B	1" BSP
Replacement filter element	V7.1560-03
Dirt-holding capacity	600 g
Weight	730 kg / 1609 lbs (without accessories)
Dimensions (length x width x height)	1500 x 1000 x 1780 mm / 59.1 x 39.4 x 70.1 inch

 typical dewatering rate with 200 liters /
 52.83 gallons of oil at > 10,000 ppm water content

Dimensions

Page 106 www.argo-hytos.com

Filter Elements

EXAPOR®AQUA

For water separation

EXAPOR®AQUA Filter Elements

Oil Service Unit FAPC 016

Off-line Filter Unit FNA 008/016

Oil samples with varying water content

Description

Application

Quick and efficient dewatering of hydraulic and lubrication oils.

Water in hydraulic and lubrication oils may have the following causes:

- > Cooler breakage
- > Environment humidity
- > Spray-water
- > Fresh oil

Already small quantities of free water in oil can lead to acidification. Corrosion of surfaces at components can be the result. Due to free water, the oil characteristics change, e.g. decreased load-carrying capacity, reduced temperature resistance. In order to avoid economic damage, the oil must be protected against free water or existing water must be withdrawn as fast as possible.

Large water quantities can be withdrawn by oil change, flushing of the system or with dewatering units.

At systems with hygroscopic oils (materials that absorb water are described as hygroscopic) or with permanent water entry through seals (e.g. hydraulic excavator used in water constructions), ARGO-HYTOS off-line filters and filter units with EXAPOR®AQUA filter elements can be permanently installed in the system, in order to withdraw water. To withdraw remaining water quantities, e.g. after new filling, the ARGO-HYTOS EXAPOR®AQUA elements in portable off-line filter units also can be used during operation of the system.

EXAPOR®AQUA filter elements are applicable in different ARGO-HYTOS filter units. Depending on the operating situation, the water absorption amounts to approx. 350 ml / element. The combination of water absorbing filter layers with micro-filter material also allows the use of EXAPOR®AQUA in hydraulic and lubrication systems with high requirements to the oil cleanliness.

The efficiency of the EXAPOR®AQUA filter elements can be analyzed on-site. As long as a turbidity is visible in the cooled down oil, the water content is, in most cases, unacceptably high. If the cooled down oil sample appears clear, the water content usually lies in the permissible range. An exact measurement of the water content is made by an oil sample analysis in the laboratory (e.g. water content regulation with the Karl Fischer method in accordance to DIN 51777).

Selection chart

EXAPOR®AQUA	Water capacity		ity Filter Dirt-holding capacity			pacity	Applicable in ARGO-HYTOS filter units
Filter element	per eleme	ent at $v =$	fineness	fineness (values in g		9	
designation	30 mm ² /s / 140 SUS			test dust ISO MTD			
				according to ISO 16889)			
	ml	gal			l/min gpm		
Y7.1560-05	1520	0.40	7 µm	590 g at	45	11.9	FNA 045, UM 045, UMPC 045
Y7.1220-113	340	0.09	3 µm			15.9	FA 008, FA 016, FAPC 016, FNA 008, FNA 016 (with filter element size V7.1220)
Y7.1220-05	370	0.10	7 μm	44 g at	60	15.9	FA 008, FA 016, FAPC 016, FNA 008, FNA 016 (with filter element size V7.1220)
Y7.1230-153	520	0.14	3 µm	130 g at	60	15.9	FN 060, FNS 060, FNA 040

Page 108 www.argo-hytos.com

International

ARGO-HYTOS worldwide

Benelux ARGO-HYTOS B.V.

Brazil ARGO-HYTOS AT Fluid Power Systems LTDA.

China ARGO-HYTOS Fluid Power Systems

Czech Republic ARGO-HYTOS s.r.o

ARGO-HYTOS Protech s.r.o

FranceARGO-HYTOS SARLGermanyARGO-HYTOS GMBHGreat BritainARGO-HYTOS Ltd.

Hong Kong ARGO-HYTOS Hong Kong Ltd.

IndiaARGO-HYTOS PVT. LTD.ItalyARGO-HYTOS S.r.l.

Poland ARGO-HYTOS Polska spz o.o.

Russia ARGO-HYTOS LLC

Sweden ARGO-HYTOS Nordic AB

Turkey ARGO-HYTOS Hid Ekip. San. ve Tic Ltd. Sti.

USA ARGO-HYTOS Inc.

info.br@argo-hytos.com
info.cn@argo-hytos.com
info.cz@ argo-hytos.com
info.protech@argo-hytos.com
info.fr@argo-hytos.com
info.de@argo-hytos.com
info.uk@argo-hytos.com
info.hk@argo-hytos.com
info.in@argo-hytos.com
info.il@argo-hytos.com
info.pl@argo-hytos.com
info.ru@argo-hytos.com
info.ru@argo-hytos.com
info.se@argo-hytos.com
info.se@argo-hytos.com
info.us@argo-hytos.com

info.benelux@argo-hytos.com

